|
#include <glm/ext/scalar_ulp.hpp> |
|
|
|
#define GLM_ENABLE_EXPERIMENTAL |
|
#include <glm/gtc/type_precision.hpp> |
|
#include <glm/gtx/fast_trigonometry.hpp> |
|
#include <glm/gtx/integer.hpp> |
|
#include <glm/gtx/common.hpp> |
|
#include <glm/gtc/constants.hpp> |
|
#include <glm/gtc/vec1.hpp> |
|
#include <glm/trigonometric.hpp> |
|
#include <cmath> |
|
#include <ctime> |
|
#include <cstdio> |
|
#include <vector> |
|
|
|
namespace fastCos |
|
{ |
|
int perf(bool NextFloat) |
|
{ |
|
const float begin = -glm::pi<float>(); |
|
const float end = glm::pi<float>(); |
|
float result = 0.f; |
|
|
|
const std::clock_t timestamp1 = std::clock(); |
|
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) |
|
result = glm::fastCos(i); |
|
|
|
const std::clock_t timestamp2 = std::clock(); |
|
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) |
|
result = glm::cos(i); |
|
|
|
const std::clock_t timestamp3 = std::clock(); |
|
const std::clock_t time_fast = timestamp2 - timestamp1; |
|
const std::clock_t time_default = timestamp3 - timestamp2; |
|
std::printf("fastCos Time %d clocks\n", static_cast<int>(time_fast)); |
|
std::printf("cos Time %d clocks\n", static_cast<int>(time_default)); |
|
|
|
return time_fast <= time_default ? 0 : 1; |
|
} |
|
} |
|
|
|
namespace fastSin |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int perf(bool NextFloat) |
|
{ |
|
const float begin = -glm::pi<float>(); |
|
const float end = glm::pi<float>(); |
|
float result = 0.f; |
|
|
|
const std::clock_t timestamp1 = std::clock(); |
|
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) |
|
result = glm::fastSin(i); |
|
|
|
const std::clock_t timestamp2 = std::clock(); |
|
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) |
|
result = glm::sin(i); |
|
|
|
const std::clock_t timestamp3 = std::clock(); |
|
const std::clock_t time_fast = timestamp2 - timestamp1; |
|
const std::clock_t time_default = timestamp3 - timestamp2; |
|
std::printf("fastSin Time %d clocks\n", static_cast<int>(time_fast)); |
|
std::printf("sin Time %d clocks\n", static_cast<int>(time_default)); |
|
|
|
return time_fast <= time_default ? 0 : 1; |
|
} |
|
} |
|
|
|
namespace fastTan |
|
{ |
|
int perf(bool NextFloat) |
|
{ |
|
const float begin = -glm::pi<float>(); |
|
const float end = glm::pi<float>(); |
|
float result = 0.f; |
|
|
|
const std::clock_t timestamp1 = std::clock(); |
|
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) |
|
result = glm::fastTan(i); |
|
|
|
const std::clock_t timestamp2 = std::clock(); |
|
for (float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) |
|
result = glm::tan(i); |
|
|
|
const std::clock_t timestamp3 = std::clock(); |
|
const std::clock_t time_fast = timestamp2 - timestamp1; |
|
const std::clock_t time_default = timestamp3 - timestamp2; |
|
std::printf("fastTan Time %d clocks\n", static_cast<int>(time_fast)); |
|
std::printf("tan Time %d clocks\n", static_cast<int>(time_default)); |
|
|
|
return time_fast <= time_default ? 0 : 1; |
|
} |
|
} |
|
|
|
namespace fastAcos |
|
{ |
|
int perf(bool NextFloat) |
|
{ |
|
const float begin = -glm::pi<float>(); |
|
const float end = glm::pi<float>(); |
|
float result = 0.f; |
|
|
|
const std::clock_t timestamp1 = std::clock(); |
|
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) |
|
result = glm::fastAcos(i); |
|
|
|
const std::clock_t timestamp2 = std::clock(); |
|
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) |
|
result = glm::acos(i); |
|
|
|
const std::clock_t timestamp3 = std::clock(); |
|
const std::clock_t time_fast = timestamp2 - timestamp1; |
|
const std::clock_t time_default = timestamp3 - timestamp2; |
|
|
|
std::printf("fastAcos Time %d clocks\n", static_cast<int>(time_fast)); |
|
std::printf("acos Time %d clocks\n", static_cast<int>(time_default)); |
|
|
|
return time_fast <= time_default ? 0 : 1; |
|
} |
|
} |
|
|
|
namespace fastAsin |
|
{ |
|
int perf(bool NextFloat) |
|
{ |
|
const float begin = -glm::pi<float>(); |
|
const float end = glm::pi<float>(); |
|
float result = 0.f; |
|
const std::clock_t timestamp1 = std::clock(); |
|
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) |
|
result = glm::fastAsin(i); |
|
const std::clock_t timestamp2 = std::clock(); |
|
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) |
|
result = glm::asin(i); |
|
const std::clock_t timestamp3 = std::clock(); |
|
const std::clock_t time_fast = timestamp2 - timestamp1; |
|
const std::clock_t time_default = timestamp3 - timestamp2; |
|
std::printf("fastAsin Time %d clocks\n", static_cast<int>(time_fast)); |
|
std::printf("asin Time %d clocks\n", static_cast<int>(time_default)); |
|
|
|
return time_fast <= time_default ? 0 : 1; |
|
} |
|
} |
|
|
|
namespace fastAtan |
|
{ |
|
int perf(bool NextFloat) |
|
{ |
|
const float begin = -glm::pi<float>(); |
|
const float end = glm::pi<float>(); |
|
float result = 0.f; |
|
const std::clock_t timestamp1 = std::clock(); |
|
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) |
|
result = glm::fastAtan(i); |
|
const std::clock_t timestamp2 = std::clock(); |
|
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) |
|
result = glm::atan(i); |
|
const std::clock_t timestamp3 = std::clock(); |
|
const std::clock_t time_fast = timestamp2 - timestamp1; |
|
const std::clock_t time_default = timestamp3 - timestamp2; |
|
std::printf("fastAtan Time %d clocks\n", static_cast<int>(time_fast)); |
|
std::printf("atan Time %d clocks\n", static_cast<int>(time_default)); |
|
|
|
return time_fast <= time_default ? 0 : 1; |
|
} |
|
} |
|
|
|
namespace taylorCos |
|
{ |
|
using glm::qualifier; |
|
using glm::length_t; |
|
|
|
glm::vec4 const AngleShift(0.0f, glm::half_pi<float>(), glm::pi<float>(), glm::three_over_two_pi<float>()); |
|
|
|
template<length_t L, typename T, qualifier Q> |
|
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> taylorSeriesNewCos(glm::vec<L, T, Q> const& x) |
|
{ |
|
glm::vec<L, T, Q> const Powed2(x * x); |
|
glm::vec<L, T, Q> const Powed4(Powed2 * Powed2); |
|
glm::vec<L, T, Q> const Powed6(Powed4 * Powed2); |
|
glm::vec<L, T, Q> const Powed8(Powed4 * Powed4); |
|
|
|
return static_cast<T>(1) |
|
- Powed2 * static_cast<T>(0.5) |
|
+ Powed4 * static_cast<T>(0.04166666666666666666666666666667) |
|
- Powed6 * static_cast<T>(0.00138888888888888888888888888889) |
|
+ Powed8 * static_cast<T>(2.4801587301587301587301587301587e-5); |
|
} |
|
|
|
template<length_t L, typename T, qualifier Q> |
|
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> taylorSeriesNewCos6(glm::vec<L, T, Q> const& x) |
|
{ |
|
glm::vec<L, T, Q> const Powed2(x * x); |
|
glm::vec<L, T, Q> const Powed4(Powed2 * Powed2); |
|
glm::vec<L, T, Q> const Powed6(Powed4 * Powed2); |
|
|
|
return static_cast<T>(1) |
|
- Powed2 * static_cast<T>(0.5) |
|
+ Powed4 * static_cast<T>(0.04166666666666666666666666666667) |
|
- Powed6 * static_cast<T>(0.00138888888888888888888888888889); |
|
} |
|
|
|
template<glm::length_t L, qualifier Q> |
|
GLM_FUNC_QUALIFIER glm::vec<L, float, Q> fastAbs(glm::vec<L, float, Q> x) |
|
{ |
|
int* Pointer = reinterpret_cast<int*>(&x[0]); |
|
Pointer[0] &= 0x7fffffff; |
|
Pointer[1] &= 0x7fffffff; |
|
Pointer[2] &= 0x7fffffff; |
|
Pointer[3] &= 0x7fffffff; |
|
return x; |
|
} |
|
|
|
template<glm::length_t L, typename T, qualifier Q> |
|
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> fastCosNew(glm::vec<L, T, Q> const& x) |
|
{ |
|
glm::vec<L, T, Q> const Angle0_PI(fastAbs(fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>())); |
|
return taylorSeriesNewCos6(x); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
int perf_fastCosNew(float Begin, float End, std::size_t Samples) |
|
{ |
|
std::vector<glm::vec4> Results; |
|
Results.resize(Samples); |
|
|
|
float const Steps = (End - Begin) / static_cast<float>(Samples); |
|
|
|
std::clock_t const TimeStampBegin = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Results[i] = fastCosNew(AngleShift + glm::vec4(Begin + Steps * static_cast<float>(i))); |
|
|
|
std::clock_t const TimeStampEnd = std::clock(); |
|
|
|
std::printf("fastCosNew %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); |
|
|
|
int Error = 0; |
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; |
|
return Error; |
|
} |
|
|
|
template<length_t L, typename T, qualifier Q> |
|
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> deterministic_fmod(glm::vec<L, T, Q> const& x, T y) |
|
{ |
|
return x - y * trunc(x / y); |
|
} |
|
|
|
template<length_t L, typename T, qualifier Q> |
|
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> fastCosDeterminisctic(glm::vec<L, T, Q> const& x) |
|
{ |
|
glm::vec<L, T, Q> const Angle0_PI(abs(deterministic_fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>())); |
|
glm::vec<L, bool, Q> const FirstQuarterPi(lessThanEqual(Angle0_PI, glm::vec<L, T, Q>(glm::half_pi<T>()))); |
|
|
|
glm::vec<L, T, Q> const RevertAngle(mix(glm::vec<L, T, Q>(glm::pi<T>()), glm::vec<L, T, Q>(0), FirstQuarterPi)); |
|
glm::vec<L, T, Q> const ReturnSign(mix(glm::vec<L, T, Q>(-1), glm::vec<L, T, Q>(1), FirstQuarterPi)); |
|
glm::vec<L, T, Q> const SectionAngle(RevertAngle - Angle0_PI); |
|
|
|
return ReturnSign * taylorSeriesNewCos(SectionAngle); |
|
} |
|
|
|
int perf_fastCosDeterminisctic(float Begin, float End, std::size_t Samples) |
|
{ |
|
std::vector<glm::vec4> Results; |
|
Results.resize(Samples); |
|
|
|
float const Steps = (End - Begin) / static_cast<float>(Samples); |
|
|
|
std::clock_t const TimeStampBegin = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Results[i] = taylorCos::fastCosDeterminisctic(AngleShift + glm::vec4(Begin + Steps * static_cast<float>(i))); |
|
|
|
std::clock_t const TimeStampEnd = std::clock(); |
|
|
|
std::printf("fastCosDeterminisctic %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); |
|
|
|
int Error = 0; |
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; |
|
return Error; |
|
} |
|
|
|
template<length_t L, typename T, qualifier Q> |
|
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> taylorSeriesRefCos(glm::vec<L, T, Q> const& x) |
|
{ |
|
return static_cast<T>(1) |
|
- (x * x) / glm::factorial(static_cast<T>(2)) |
|
+ (x * x * x * x) / glm::factorial(static_cast<T>(4)) |
|
- (x * x * x * x * x * x) / glm::factorial(static_cast<T>(6)) |
|
+ (x * x * x * x * x * x * x * x) / glm::factorial(static_cast<T>(8)); |
|
} |
|
|
|
template<length_t L, typename T, qualifier Q> |
|
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> fastRefCos(glm::vec<L, T, Q> const& x) |
|
{ |
|
glm::vec<L, T, Q> const Angle0_PI(glm::abs(fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>())); |
|
|
|
|
|
glm::vec<L, bool, Q> const FirstQuarterPi(lessThanEqual(Angle0_PI, glm::vec<L, T, Q>(glm::half_pi<T>()))); |
|
|
|
glm::vec<L, T, Q> const RevertAngle(mix(glm::vec<L, T, Q>(glm::pi<T>()), glm::vec<L, T, Q>(0), FirstQuarterPi)); |
|
glm::vec<L, T, Q> const ReturnSign(mix(glm::vec<L, T, Q>(-1), glm::vec<L, T, Q>(1), FirstQuarterPi)); |
|
glm::vec<L, T, Q> const SectionAngle(RevertAngle - Angle0_PI); |
|
|
|
return ReturnSign * taylorSeriesRefCos(SectionAngle); |
|
} |
|
|
|
int perf_fastCosRef(float Begin, float End, std::size_t Samples) |
|
{ |
|
std::vector<glm::vec4> Results; |
|
Results.resize(Samples); |
|
|
|
float const Steps = (End - Begin) / static_cast<float>(Samples); |
|
|
|
std::clock_t const TimeStampBegin = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Results[i] = taylorCos::fastRefCos(AngleShift + glm::vec4(Begin + Steps * static_cast<float>(i))); |
|
|
|
std::clock_t const TimeStampEnd = std::clock(); |
|
|
|
std::printf("fastCosRef %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); |
|
|
|
int Error = 0; |
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; |
|
return Error; |
|
} |
|
|
|
int perf_fastCosOld(float Begin, float End, std::size_t Samples) |
|
{ |
|
std::vector<glm::vec4> Results; |
|
Results.resize(Samples); |
|
|
|
float const Steps = (End - Begin) / static_cast<float>(Samples); |
|
|
|
std::clock_t const TimeStampBegin = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Results[i] = glm::fastCos(AngleShift + glm::vec4(Begin + Steps * static_cast<float>(i))); |
|
|
|
std::clock_t const TimeStampEnd = std::clock(); |
|
|
|
std::printf("fastCosOld %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); |
|
|
|
int Error = 0; |
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; |
|
return Error; |
|
} |
|
|
|
int perf_cos(float Begin, float End, std::size_t Samples) |
|
{ |
|
std::vector<glm::vec4> Results; |
|
Results.resize(Samples); |
|
|
|
float const Steps = (End - Begin) / static_cast<float>(Samples); |
|
|
|
std::clock_t const TimeStampBegin = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Results[i] = glm::cos(AngleShift + glm::vec4(Begin + Steps * static_cast<float>(i))); |
|
|
|
std::clock_t const TimeStampEnd = std::clock(); |
|
|
|
std::printf("cos %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); |
|
|
|
int Error = 0; |
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; |
|
return Error; |
|
} |
|
|
|
int perf(std::size_t const Samples) |
|
{ |
|
int Error = 0; |
|
|
|
float const Begin = -glm::pi<float>(); |
|
float const End = glm::pi<float>(); |
|
|
|
Error += perf_cos(Begin, End, Samples); |
|
Error += perf_fastCosOld(Begin, End, Samples); |
|
Error += perf_fastCosRef(Begin, End, Samples); |
|
|
|
Error += perf_fastCosDeterminisctic(Begin, End, Samples); |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error = 0; |
|
|
|
|
|
|
|
for(float Angle = 0.0f; Angle < 180.0f; Angle += 0.1f) |
|
{ |
|
float const modAngle = std::fmod(glm::abs(Angle), 360.f); |
|
assert(modAngle >= 0.0f && modAngle <= 360.f); |
|
float const radAngle = glm::radians(modAngle); |
|
float const Cos0 = std::cos(radAngle); |
|
|
|
float const Cos1 = taylorCos::fastRefCos(glm::fvec1(radAngle)).x; |
|
Error += glm::abs(Cos1 - Cos0) < 0.1f ? 0 : 1; |
|
|
|
|
|
|
|
|
|
assert(!Error); |
|
} |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace taylor2 |
|
{ |
|
glm::vec4 const AngleShift(0.0f, glm::pi<float>() * 0.5f, glm::pi<float>() * 1.0f, glm::pi<float>() * 1.5f); |
|
|
|
float taylorCosA(float x) |
|
{ |
|
return 1.f |
|
- (x * x) * (1.f / 2.f) |
|
+ (x * x * x * x) * (1.f / 24.f) |
|
- (x * x * x * x * x * x) * (1.f / 720.f) |
|
+ (x * x * x * x * x * x * x * x) * (1.f / 40320.f); |
|
} |
|
|
|
float taylorCosB(float x) |
|
{ |
|
return 1.f |
|
- (x * x) * (1.f / 2.f) |
|
+ (x * x * x * x) * (1.f / 24.f) |
|
- (x * x * x * x * x * x) * (1.f / 720.f) |
|
+ (x * x * x * x * x * x * x * x) * (1.f / 40320.f); |
|
} |
|
|
|
float taylorCosC(float x) |
|
{ |
|
return 1.f |
|
- (x * x) * (1.f / 2.f) |
|
+ ((x * x) * (x * x)) * (1.f / 24.f) |
|
- (((x * x) * (x * x)) * (x * x)) * (1.f / 720.f) |
|
+ (((x * x) * (x * x)) * ((x * x) * (x * x))) * (1.f / 40320.f); |
|
} |
|
|
|
int perf_taylorCosA(float Begin, float End, std::size_t Samples) |
|
{ |
|
std::vector<float> Results; |
|
Results.resize(Samples); |
|
|
|
float const Steps = (End - Begin) / static_cast<float>(Samples); |
|
|
|
std::clock_t const TimeStampBegin = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Results[i] = taylorCosA(AngleShift.x + Begin + Steps * static_cast<float>(i)); |
|
|
|
std::clock_t const TimeStampEnd = std::clock(); |
|
|
|
std::printf("taylorCosA %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); |
|
|
|
int Error = 0; |
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Error += Results[i] >= -1.0f && Results[i] <= 1.0f ? 0 : 1; |
|
return Error; |
|
} |
|
|
|
int perf_taylorCosB(float Begin, float End, std::size_t Samples) |
|
{ |
|
std::vector<float> Results; |
|
Results.resize(Samples); |
|
|
|
float const Steps = (End - Begin) / static_cast<float>(Samples); |
|
|
|
std::clock_t const TimeStampBegin = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Results[i] = taylorCosB(AngleShift.x + Begin + Steps * static_cast<float>(i)); |
|
|
|
std::clock_t const TimeStampEnd = std::clock(); |
|
|
|
std::printf("taylorCosB %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); |
|
|
|
int Error = 0; |
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Error += Results[i] >= -1.0f && Results[i] <= 1.0f ? 0 : 1; |
|
return Error; |
|
} |
|
|
|
int perf_taylorCosC(float Begin, float End, std::size_t Samples) |
|
{ |
|
std::vector<float> Results; |
|
Results.resize(Samples); |
|
|
|
float const Steps = (End - Begin) / static_cast<float>(Samples); |
|
|
|
std::clock_t const TimeStampBegin = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Results[i] = taylorCosC(AngleShift.x + Begin + Steps * static_cast<float>(i)); |
|
|
|
std::clock_t const TimeStampEnd = std::clock(); |
|
|
|
std::printf("taylorCosC %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); |
|
|
|
int Error = 0; |
|
for(std::size_t i = 0; i < Samples; ++i) |
|
Error += Results[i] >= -1.0f && Results[i] <= 1.0f ? 0 : 1; |
|
return Error; |
|
} |
|
|
|
int perf(std::size_t Samples) |
|
{ |
|
int Error = 0; |
|
|
|
float const Begin = -glm::pi<float>(); |
|
float const End = glm::pi<float>(); |
|
|
|
Error += perf_taylorCosA(Begin, End, Samples); |
|
Error += perf_taylorCosB(Begin, End, Samples); |
|
Error += perf_taylorCosC(Begin, End, Samples); |
|
|
|
return Error; |
|
} |
|
|
|
} |
|
|
|
int main() |
|
{ |
|
int Error(0); |
|
|
|
Error += ::taylor2::perf(1000); |
|
Error += ::taylorCos::test(); |
|
Error += ::taylorCos::perf(1000); |
|
|
|
# ifdef NDEBUG |
|
::fastCos::perf(false); |
|
::fastSin::perf(false); |
|
::fastTan::perf(false); |
|
::fastAcos::perf(false); |
|
::fastAsin::perf(false); |
|
::fastAtan::perf(false); |
|
# endif |
|
|
|
return Error; |
|
} |
|
|