|
#define GLM_ENABLE_EXPERIMENTAL |
|
#include <glm/gtx/common.hpp> |
|
#include <glm/gtc/integer.hpp> |
|
#include <glm/gtc/epsilon.hpp> |
|
#include <glm/vector_relational.hpp> |
|
#include <glm/common.hpp> |
|
|
|
namespace fmod_ |
|
{ |
|
template<typename genType> |
|
GLM_FUNC_QUALIFIER genType modTrunc(genType a, genType b) |
|
{ |
|
return a - b * glm::trunc(a / b); |
|
} |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
{ |
|
float A0(3.0); |
|
float B0(2.0f); |
|
float C0 = glm::fmod(A0, B0); |
|
|
|
Error += glm::abs(C0 - 1.0f) < 0.00001f ? 0 : 1; |
|
|
|
glm::vec4 A1(3.0); |
|
float B1(2.0f); |
|
glm::vec4 C1 = glm::fmod(A1, B1); |
|
|
|
Error += glm::all(glm::epsilonEqual(C1, glm::vec4(1.0f), 0.00001f)) ? 0 : 1; |
|
|
|
glm::vec4 A2(3.0); |
|
glm::vec4 B2(2.0f); |
|
glm::vec4 C2 = glm::fmod(A2, B2); |
|
|
|
Error += glm::all(glm::epsilonEqual(C2, glm::vec4(1.0f), 0.00001f)) ? 0 : 1; |
|
|
|
glm::ivec4 A3(3); |
|
int B3(2); |
|
glm::ivec4 C3 = glm::fmod(A3, B3); |
|
|
|
Error += glm::all(glm::equal(C3, glm::ivec4(1))) ? 0 : 1; |
|
|
|
glm::ivec4 A4(3); |
|
glm::ivec4 B4(2); |
|
glm::ivec4 C4 = glm::fmod(A4, B4); |
|
|
|
Error += glm::all(glm::equal(C4, glm::ivec4(1))) ? 0 : 1; |
|
} |
|
|
|
{ |
|
float A0(22.0); |
|
float B0(-10.0f); |
|
float C0 = glm::fmod(A0, B0); |
|
|
|
Error += glm::abs(C0 - 2.0f) < 0.00001f ? 0 : 1; |
|
|
|
glm::vec4 A1(22.0); |
|
float B1(-10.0f); |
|
glm::vec4 C1 = glm::fmod(A1, B1); |
|
|
|
Error += glm::all(glm::epsilonEqual(C1, glm::vec4(2.0f), 0.00001f)) ? 0 : 1; |
|
|
|
glm::vec4 A2(22.0); |
|
glm::vec4 B2(-10.0f); |
|
glm::vec4 C2 = glm::fmod(A2, B2); |
|
|
|
Error += glm::all(glm::epsilonEqual(C2, glm::vec4(2.0f), 0.00001f)) ? 0 : 1; |
|
|
|
glm::ivec4 A3(22); |
|
int B3(-10); |
|
glm::ivec4 C3 = glm::fmod(A3, B3); |
|
|
|
Error += glm::all(glm::equal(C3, glm::ivec4(2))) ? 0 : 1; |
|
|
|
glm::ivec4 A4(22); |
|
glm::ivec4 B4(-10); |
|
glm::ivec4 C4 = glm::fmod(A4, B4); |
|
|
|
Error += glm::all(glm::equal(C4, glm::ivec4(2))) ? 0 : 1; |
|
} |
|
|
|
|
|
{ |
|
for (float y = -10.0f; y < 10.0f; y += 0.1f) |
|
for (float x = -10.0f; x < 10.0f; x += 0.1f) |
|
{ |
|
float const A(std::fmod(x, y)); |
|
|
|
float const C(glm::fmod(x, y)); |
|
float const D(modTrunc(x, y)); |
|
|
|
|
|
|
|
Error += glm::epsilonEqual(A, C, 0.0001f) ? 0 : 1; |
|
assert(!Error); |
|
Error += glm::epsilonEqual(A, D, 0.00001f) ? 0 : 1; |
|
assert(!Error); |
|
} |
|
} |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
int test_isdenormal() |
|
{ |
|
int Error = 0; |
|
|
|
bool A = glm::isdenormal(1.0f); |
|
Error += !A ? 0 : 1; |
|
|
|
glm::bvec1 B = glm::isdenormal(glm::vec1(1.0f)); |
|
Error += !glm::any(B) ? 0 : 1; |
|
|
|
glm::bvec2 C = glm::isdenormal(glm::vec2(1.0f)); |
|
Error += !glm::any(C) ? 0 : 1; |
|
|
|
glm::bvec3 D = glm::isdenormal(glm::vec3(1.0f)); |
|
Error += !glm::any(D) ? 0 : 1; |
|
|
|
glm::bvec4 E = glm::isdenormal(glm::vec4(1.0f)); |
|
Error += !glm::any(E) ? 0 : 1; |
|
|
|
return Error; |
|
} |
|
|
|
int test_openBounded() |
|
{ |
|
int Error = 0; |
|
|
|
Error += glm::all(glm::openBounded(glm::ivec2(2), glm::ivec2(1), glm::ivec2(3))) ? 0 : 1; |
|
Error += !glm::all(glm::openBounded(glm::ivec2(1), glm::ivec2(1), glm::ivec2(3))) ? 0 : 1; |
|
Error += !glm::all(glm::openBounded(glm::ivec2(3), glm::ivec2(1), glm::ivec2(3))) ? 0 : 1; |
|
|
|
return Error; |
|
} |
|
|
|
int test_closeBounded() |
|
{ |
|
int Error = 0; |
|
|
|
Error += glm::all(glm::closeBounded(glm::ivec2(2), glm::ivec2(1), glm::ivec2(3))) ? 0 : 1; |
|
Error += glm::all(glm::closeBounded(glm::ivec2(1), glm::ivec2(1), glm::ivec2(3))) ? 0 : 1; |
|
Error += glm::all(glm::closeBounded(glm::ivec2(3), glm::ivec2(1), glm::ivec2(3))) ? 0 : 1; |
|
|
|
return Error; |
|
} |
|
|
|
int main() |
|
{ |
|
int Error = 0; |
|
|
|
Error += test_isdenormal(); |
|
Error += ::fmod_::test(); |
|
Error += test_openBounded(); |
|
Error += test_closeBounded(); |
|
|
|
return Error; |
|
} |
|
|