|
#include <glm/gtc/round.hpp> |
|
#include <glm/gtc/type_precision.hpp> |
|
#include <glm/gtc/vec1.hpp> |
|
#include <glm/gtc/epsilon.hpp> |
|
#include <vector> |
|
#include <ctime> |
|
#include <cstdio> |
|
|
|
namespace isPowerOfTwo |
|
{ |
|
template<typename genType> |
|
struct type |
|
{ |
|
genType Value; |
|
bool Return; |
|
}; |
|
|
|
int test_int16() |
|
{ |
|
type<glm::int16> const Data[] = |
|
{ |
|
{0x0001, true}, |
|
{0x0002, true}, |
|
{0x0004, true}, |
|
{0x0080, true}, |
|
{0x0000, true}, |
|
{0x0003, false} |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i) |
|
{ |
|
bool Result = glm::isPowerOfTwo(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_uint16() |
|
{ |
|
type<glm::uint16> const Data[] = |
|
{ |
|
{0x0001, true}, |
|
{0x0002, true}, |
|
{0x0004, true}, |
|
{0x0000, true}, |
|
{0x0000, true}, |
|
{0x0003, false} |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i) |
|
{ |
|
bool Result = glm::isPowerOfTwo(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_int32() |
|
{ |
|
type<int> const Data[] = |
|
{ |
|
{0x00000001, true}, |
|
{0x00000002, true}, |
|
{0x00000004, true}, |
|
{0x0000000f, false}, |
|
{0x00000000, true}, |
|
{0x00000003, false} |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) |
|
{ |
|
bool Result = glm::isPowerOfTwo(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) |
|
{ |
|
glm::bvec1 Result = glm::isPowerOfTwo(glm::ivec1(Data[i].Value)); |
|
Error += glm::all(glm::equal(glm::bvec1(Data[i].Return), Result)) ? 0 : 1; |
|
} |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) |
|
{ |
|
glm::bvec2 Result = glm::isPowerOfTwo(glm::ivec2(Data[i].Value)); |
|
Error += glm::all(glm::equal(glm::bvec2(Data[i].Return), Result)) ? 0 : 1; |
|
} |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) |
|
{ |
|
glm::bvec3 Result = glm::isPowerOfTwo(glm::ivec3(Data[i].Value)); |
|
Error += glm::all(glm::equal(glm::bvec3(Data[i].Return), Result)) ? 0 : 1; |
|
} |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) |
|
{ |
|
glm::bvec4 Result = glm::isPowerOfTwo(glm::ivec4(Data[i].Value)); |
|
Error += glm::all(glm::equal(glm::bvec4(Data[i].Return), Result)) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_uint32() |
|
{ |
|
type<glm::uint> const Data[] = |
|
{ |
|
{0x00000001, true}, |
|
{0x00000002, true}, |
|
{0x00000004, true}, |
|
{0x80000000, true}, |
|
{0x00000000, true}, |
|
{0x00000003, false} |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i) |
|
{ |
|
bool Result = glm::isPowerOfTwo(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
Error += test_int16(); |
|
Error += test_uint16(); |
|
Error += test_int32(); |
|
Error += test_uint32(); |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace ceilPowerOfTwo_advanced |
|
{ |
|
template<typename genIUType> |
|
GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value) |
|
{ |
|
genIUType tmp = Value; |
|
genIUType result = genIUType(0); |
|
while(tmp) |
|
{ |
|
result = (tmp & (~tmp + 1)); |
|
tmp &= ~result; |
|
} |
|
return result; |
|
} |
|
|
|
template<typename genType> |
|
GLM_FUNC_QUALIFIER genType ceilPowerOfTwo_loop(genType value) |
|
{ |
|
return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1; |
|
} |
|
|
|
template<typename genType> |
|
struct type |
|
{ |
|
genType Value; |
|
genType Return; |
|
}; |
|
|
|
int test_int32() |
|
{ |
|
type<glm::int32> const Data[] = |
|
{ |
|
{0x0000ffff, 0x00010000}, |
|
{-3, -4}, |
|
{-8, -8}, |
|
{0x00000001, 0x00000001}, |
|
{0x00000002, 0x00000002}, |
|
{0x00000004, 0x00000004}, |
|
{0x00000007, 0x00000008}, |
|
{0x0000fff0, 0x00010000}, |
|
{0x0000f000, 0x00010000}, |
|
{0x08000000, 0x08000000}, |
|
{0x00000000, 0x00000000}, |
|
{0x00000003, 0x00000004} |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i) |
|
{ |
|
glm::int32 Result = glm::ceilPowerOfTwo(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_uint32() |
|
{ |
|
type<glm::uint32> const Data[] = |
|
{ |
|
{0x00000001, 0x00000001}, |
|
{0x00000002, 0x00000002}, |
|
{0x00000004, 0x00000004}, |
|
{0x00000007, 0x00000008}, |
|
{0x0000ffff, 0x00010000}, |
|
{0x0000fff0, 0x00010000}, |
|
{0x0000f000, 0x00010000}, |
|
{0x80000000, 0x80000000}, |
|
{0x00000000, 0x00000000}, |
|
{0x00000003, 0x00000004} |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i) |
|
{ |
|
glm::uint32 Result = glm::ceilPowerOfTwo(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int perf() |
|
{ |
|
int Error(0); |
|
|
|
std::vector<glm::uint> v; |
|
v.resize(100000000); |
|
|
|
std::clock_t Timestramp0 = std::clock(); |
|
|
|
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) |
|
v[i] = ceilPowerOfTwo_loop(i); |
|
|
|
std::clock_t Timestramp1 = std::clock(); |
|
|
|
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) |
|
v[i] = glm::ceilPowerOfTwo(i); |
|
|
|
std::clock_t Timestramp2 = std::clock(); |
|
|
|
std::printf("ceilPowerOfTwo_loop: %d clocks\n", static_cast<int>(Timestramp1 - Timestramp0)); |
|
std::printf("glm::ceilPowerOfTwo: %d clocks\n", static_cast<int>(Timestramp2 - Timestramp1)); |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
Error += test_int32(); |
|
Error += test_uint32(); |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace roundPowerOfTwo |
|
{ |
|
int test() |
|
{ |
|
int Error = 0; |
|
|
|
glm::uint32 const A = glm::roundPowerOfTwo(7u); |
|
Error += A == 8u ? 0 : 1; |
|
|
|
glm::uint32 const B = glm::roundPowerOfTwo(15u); |
|
Error += B == 16u ? 0 : 1; |
|
|
|
glm::uint32 const C = glm::roundPowerOfTwo(31u); |
|
Error += C == 32u ? 0 : 1; |
|
|
|
glm::uint32 const D = glm::roundPowerOfTwo(9u); |
|
Error += D == 8u ? 0 : 1; |
|
|
|
glm::uint32 const E = glm::roundPowerOfTwo(17u); |
|
Error += E == 16u ? 0 : 1; |
|
|
|
glm::uint32 const F = glm::roundPowerOfTwo(33u); |
|
Error += F == 32u ? 0 : 1; |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace floorPowerOfTwo |
|
{ |
|
int test() |
|
{ |
|
int Error = 0; |
|
|
|
glm::uint32 const A = glm::floorPowerOfTwo(7u); |
|
Error += A == 4u ? 0 : 1; |
|
|
|
glm::uint32 const B = glm::floorPowerOfTwo(15u); |
|
Error += B == 8u ? 0 : 1; |
|
|
|
glm::uint32 const C = glm::floorPowerOfTwo(31u); |
|
Error += C == 16u ? 0 : 1; |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace ceilPowerOfTwo |
|
{ |
|
int test() |
|
{ |
|
int Error = 0; |
|
|
|
glm::uint32 const A = glm::ceilPowerOfTwo(7u); |
|
Error += A == 8u ? 0 : 1; |
|
|
|
glm::uint32 const B = glm::ceilPowerOfTwo(15u); |
|
Error += B == 16u ? 0 : 1; |
|
|
|
glm::uint32 const C = glm::ceilPowerOfTwo(31u); |
|
Error += C == 32u ? 0 : 1; |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace floorMultiple |
|
{ |
|
template<typename genType> |
|
struct type |
|
{ |
|
genType Source; |
|
genType Multiple; |
|
genType Return; |
|
genType Epsilon; |
|
}; |
|
|
|
int test_float() |
|
{ |
|
type<glm::float64> const Data[] = |
|
{ |
|
{3.4, 0.3, 3.3, 0.0001}, |
|
{-1.4, 0.3, -1.5, 0.0001}, |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::float64>); i < n; ++i) |
|
{ |
|
glm::float64 Result = glm::floorMultiple(Data[i].Source, Data[i].Multiple); |
|
Error += glm::epsilonEqual(Data[i].Return, Result, Data[i].Epsilon) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
Error += test_float(); |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace ceilMultiple |
|
{ |
|
template<typename genType> |
|
struct type |
|
{ |
|
genType Source; |
|
genType Multiple; |
|
genType Return; |
|
genType Epsilon; |
|
}; |
|
|
|
int test_float() |
|
{ |
|
type<glm::float64> const Data[] = |
|
{ |
|
{3.4, 0.3, 3.6, 0.0001}, |
|
{-1.4, 0.3, -1.2, 0.0001}, |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::float64>); i < n; ++i) |
|
{ |
|
glm::float64 Result = glm::ceilMultiple(Data[i].Source, Data[i].Multiple); |
|
Error += glm::epsilonEqual(Data[i].Return, Result, Data[i].Epsilon) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_int() |
|
{ |
|
type<int> const Data[] = |
|
{ |
|
{3, 4, 4, 0}, |
|
{7, 4, 8, 0}, |
|
{5, 4, 8, 0}, |
|
{1, 4, 4, 0}, |
|
{1, 3, 3, 0}, |
|
{4, 3, 6, 0}, |
|
{4, 1, 4, 0}, |
|
{1, 1, 1, 0}, |
|
{7, 1, 7, 0}, |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) |
|
{ |
|
int Result = glm::ceilMultiple(Data[i].Source, Data[i].Multiple); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
Error += test_int(); |
|
Error += test_float(); |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
int main() |
|
{ |
|
int Error(0); |
|
|
|
Error += isPowerOfTwo::test(); |
|
Error += floorPowerOfTwo::test(); |
|
Error += roundPowerOfTwo::test(); |
|
Error += ceilPowerOfTwo::test(); |
|
Error += ceilPowerOfTwo_advanced::test(); |
|
|
|
# ifdef NDEBUG |
|
Error += ceilPowerOfTwo_advanced::perf(); |
|
# endif |
|
|
|
Error += floorMultiple::test(); |
|
Error += ceilMultiple::test(); |
|
|
|
return Error; |
|
} |
|
|