|
#include <glm/gtc/constants.hpp> |
|
#include <glm/gtc/quaternion.hpp> |
|
#include <glm/gtc/matrix_transform.hpp> |
|
#include <glm/ext/matrix_relational.hpp> |
|
#include <glm/ext/vector_relational.hpp> |
|
#include <glm/ext/scalar_relational.hpp> |
|
#include <glm/glm.hpp> |
|
#include <vector> |
|
|
|
int test_quat_angle() |
|
{ |
|
int Error = 0; |
|
|
|
{ |
|
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1)); |
|
glm::quat N = glm::normalize(Q); |
|
float L = glm::length(N); |
|
Error += glm::equal(L, 1.0f, 0.01f) ? 0 : 1; |
|
float A = glm::angle(N); |
|
Error += glm::equal(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1; |
|
} |
|
{ |
|
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(0, 1, 1))); |
|
glm::quat N = glm::normalize(Q); |
|
float L = glm::length(N); |
|
Error += glm::equal(L, 1.0f, 0.01f) ? 0 : 1; |
|
float A = glm::angle(N); |
|
Error += glm::equal(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1; |
|
} |
|
{ |
|
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(1, 2, 3))); |
|
glm::quat N = glm::normalize(Q); |
|
float L = glm::length(N); |
|
Error += glm::equal(L, 1.0f, 0.01f) ? 0 : 1; |
|
float A = glm::angle(N); |
|
Error += glm::equal(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_quat_angleAxis() |
|
{ |
|
int Error = 0; |
|
|
|
glm::quat A = glm::angleAxis(0.f, glm::vec3(0.f, 0.f, 1.f)); |
|
glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1)); |
|
glm::quat C = glm::mix(A, B, 0.5f); |
|
glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1)); |
|
|
|
Error += glm::equal(C.x, D.x, 0.01f) ? 0 : 1; |
|
Error += glm::equal(C.y, D.y, 0.01f) ? 0 : 1; |
|
Error += glm::equal(C.z, D.z, 0.01f) ? 0 : 1; |
|
Error += glm::equal(C.w, D.w, 0.01f) ? 0 : 1; |
|
|
|
return Error; |
|
} |
|
|
|
int test_quat_mix() |
|
{ |
|
int Error = 0; |
|
|
|
glm::quat A = glm::angleAxis(0.f, glm::vec3(0.f, 0.f, 1.f)); |
|
glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1)); |
|
glm::quat C = glm::mix(A, B, 0.5f); |
|
glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1)); |
|
|
|
Error += glm::equal(C.x, D.x, 0.01f) ? 0 : 1; |
|
Error += glm::equal(C.y, D.y, 0.01f) ? 0 : 1; |
|
Error += glm::equal(C.z, D.z, 0.01f) ? 0 : 1; |
|
Error += glm::equal(C.w, D.w, 0.01f) ? 0 : 1; |
|
|
|
return Error; |
|
} |
|
|
|
int test_quat_normalize() |
|
{ |
|
int Error(0); |
|
|
|
{ |
|
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1)); |
|
glm::quat N = glm::normalize(Q); |
|
float L = glm::length(N); |
|
Error += glm::equal(L, 1.0f, 0.000001f) ? 0 : 1; |
|
} |
|
{ |
|
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 2)); |
|
glm::quat N = glm::normalize(Q); |
|
float L = glm::length(N); |
|
Error += glm::equal(L, 1.0f, 0.000001f) ? 0 : 1; |
|
} |
|
{ |
|
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(1, 2, 3)); |
|
glm::quat N = glm::normalize(Q); |
|
float L = glm::length(N); |
|
Error += glm::equal(L, 1.0f, 0.000001f) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_quat_euler() |
|
{ |
|
int Error = 0; |
|
|
|
{ |
|
glm::quat q(1.0f, 0.0f, 0.0f, 1.0f); |
|
float Roll = glm::roll(q); |
|
float Pitch = glm::pitch(q); |
|
float Yaw = glm::yaw(q); |
|
glm::vec3 Angles = glm::eulerAngles(q); |
|
Error += glm::all(glm::equal(Angles, glm::vec3(Pitch, Yaw, Roll), 0.000001f)) ? 0 : 1; |
|
} |
|
|
|
{ |
|
glm::dquat q(1.0, 0.0, 0.0, 1.0); |
|
double Roll = glm::roll(q); |
|
double Pitch = glm::pitch(q); |
|
double Yaw = glm::yaw(q); |
|
glm::dvec3 Angles = glm::eulerAngles(q); |
|
Error += glm::all(glm::equal(Angles, glm::dvec3(Pitch, Yaw, Roll), 0.000001)) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_quat_slerp() |
|
{ |
|
int Error = 0; |
|
|
|
float const Epsilon = 0.0001f; |
|
|
|
float sqrt2 = std::sqrt(2.0f)/2.0f; |
|
glm::quat id(static_cast<float>(1), static_cast<float>(0), static_cast<float>(0), static_cast<float>(0)); |
|
glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f); |
|
glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f); |
|
|
|
|
|
|
|
glm::quat id2 = glm::slerp(id, Y90rot, 0.0f); |
|
Error += glm::all(glm::equal(id, id2, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f); |
|
Error += glm::all(glm::equal(Y90rot, Y90rot2, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
glm::quat Y45rot1 = glm::slerp(id, Y90rot, 0.5f); |
|
|
|
|
|
|
|
glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.5f); |
|
|
|
|
|
|
|
|
|
glm::quat Y45rot3 = glm::slerp(id , -Y90rot, 0.5f); |
|
float Y45angle3 = glm::angle(Y45rot3); |
|
Error += glm::equal(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1; |
|
Error += glm::all(glm::equal(Ym45rot2, Y45rot3, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
|
|
glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f); |
|
Error += glm::all(glm::equal(Ym45rot2, -Y45rot4, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
glm::quat Y90rot3 = glm::slerp(Y90rot, Y90rot, 0.5f); |
|
Error += glm::all(glm::equal(Y90rot, Y90rot3, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f); |
|
float XZ90angle = glm::angle(XZ90rot); |
|
Error += glm::equal(XZ90angle, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1; |
|
|
|
|
|
|
|
glm::quat almostid = glm::slerp(id, glm::angleAxis(0.1f, glm::vec3(0.0f, 1.0f, 0.0f)), 0.5f); |
|
|
|
|
|
{ |
|
glm::quat a(-1, 0, 0, 0); |
|
|
|
glm::quat result = glm::slerp(a, id, 0.5f); |
|
|
|
Error += glm::equal(glm::pow(glm::dot(id, result), 2.f), 1.f, 0.01f) ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_quat_slerp_spins() |
|
{ |
|
int Error = 0; |
|
|
|
float const Epsilon = 0.0001f; |
|
|
|
float sqrt2 = std::sqrt(2.0f) / 2.0f; |
|
glm::quat id(static_cast<float>(1), static_cast<float>(0), static_cast<float>(0), static_cast<float>(0)); |
|
glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f); |
|
glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f); |
|
|
|
|
|
|
|
glm::quat id2 = glm::slerp(id, id, 1.0f, 1); |
|
Error += glm::all(glm::equal(id, id2, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
glm::quat id3 = glm::slerp(id, id, 1.0f, 2); |
|
Error += glm::all(glm::equal(id, id3, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
|
|
glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f, 1); |
|
Error += glm::all(glm::equal(Y90rot, -Y90rot2, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
glm::quat Y90rot3 = glm::slerp(id, Y90rot, 8.0f / 9.0f, 2); |
|
Error += glm::all(glm::equal(id, Y90rot3, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
glm::quat Y90rot4 = glm::slerp(id, Y90rot, 0.2f, 1); |
|
Error += glm::all(glm::equal(Y90rot, Y90rot4, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
|
|
glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.9f, 1); |
|
glm::quat Ym45rot3 = glm::slerp(Y90rot, id, 0.5f); |
|
Error += glm::all(glm::equal(-Ym45rot2, Ym45rot3, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
|
|
glm::quat Y45rot3 = glm::slerp(id, -Y90rot, 0.5f, 0); |
|
float Y45angle3 = glm::angle(Y45rot3); |
|
Error += glm::equal(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1; |
|
Error += glm::all(glm::equal(Ym45rot3, Y45rot3, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
|
|
glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f, 0); |
|
Error += glm::all(glm::equal(Ym45rot2, Y45rot4, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
glm::quat Y90rot5 = glm::slerp(Y90rot, Y90rot, 0.5f, 2); |
|
Error += glm::all(glm::equal(Y90rot, Y90rot5, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f, 1); |
|
float XZ90angle = glm::angle(XZ90rot); |
|
Error += glm::equal(XZ90angle, glm::pi<float>() * 1.25f, Epsilon) ? 0 : 1; |
|
|
|
|
|
|
|
|
|
glm::quat Neg90rot = glm::slerp(id, Y90rot, 2.0f / 3.0f, -1); |
|
Error += glm::all(glm::equal(Y180rot, -Neg90rot, Epsilon)) ? 0 : 1; |
|
|
|
return Error; |
|
} |
|
|
|
static int test_quat_mul_vec() |
|
{ |
|
int Error(0); |
|
|
|
glm::quat q = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1)); |
|
glm::vec3 v(1, 0, 0); |
|
glm::vec3 u(q * v); |
|
glm::vec3 w(u * q); |
|
|
|
Error += glm::all(glm::equal(v, w, 0.01f)) ? 0 : 1; |
|
|
|
return Error; |
|
} |
|
|
|
static int test_mul() |
|
{ |
|
int Error = 0; |
|
|
|
glm::quat temp1 = glm::normalize(glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0))); |
|
glm::quat temp2 = glm::normalize(glm::quat(0.5f, glm::vec3(1.0, 0.0, 0.0))); |
|
|
|
glm::vec3 transformed0 = (temp1 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp1)); |
|
glm::vec3 temp4 = temp2 * transformed0 * glm::inverse(temp2); |
|
|
|
glm::quat temp5 = glm::normalize(temp1 * temp2); |
|
glm::vec3 temp6 = temp5 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp5); |
|
|
|
glm::quat temp7(1.0f, glm::vec3(0.0, 1.0, 0.0)); |
|
|
|
temp7 *= temp5; |
|
temp7 *= glm::inverse(temp5); |
|
|
|
Error += glm::any(glm::notEqual(temp7, glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0)), glm::epsilon<float>())) ? 1 : 0; |
|
|
|
return Error; |
|
} |
|
|
|
int test_identity() |
|
{ |
|
int Error = 0; |
|
|
|
glm::quat const Q = glm::identity<glm::quat>(); |
|
|
|
Error += glm::all(glm::equal(Q, glm::quat(1, 0, 0, 0), 0.0001f)) ? 0 : 1; |
|
Error += glm::any(glm::notEqual(Q, glm::quat(1, 0, 0, 0), 0.0001f)) ? 1 : 0; |
|
|
|
glm::mat4 const M = glm::identity<glm::mat4x4>(); |
|
glm::mat4 const N(1.0f); |
|
|
|
Error += glm::all(glm::equal(M, N, 0.0001f)) ? 0 : 1; |
|
|
|
return Error; |
|
} |
|
|
|
int main() |
|
{ |
|
int Error = 0; |
|
|
|
Error += test_mul(); |
|
Error += test_quat_mul_vec(); |
|
Error += test_quat_angle(); |
|
Error += test_quat_angleAxis(); |
|
Error += test_quat_mix(); |
|
Error += test_quat_normalize(); |
|
Error += test_quat_euler(); |
|
Error += test_quat_slerp(); |
|
Error += test_quat_slerp_spins(); |
|
Error += test_identity(); |
|
|
|
return Error; |
|
} |
|
|