|
#include <glm/gtc/matrix_inverse.hpp> |
|
#include <glm/gtc/epsilon.hpp> |
|
|
|
int test_affine() |
|
{ |
|
int Error = 0; |
|
|
|
{ |
|
glm::mat3 const M( |
|
2.f, 0.f, 0.f, |
|
0.f, 2.f, 0.f, |
|
0.f, 0.f, 1.f); |
|
glm::mat3 const A = glm::affineInverse(M); |
|
glm::mat3 const I = glm::inverse(M); |
|
glm::mat3 const R = glm::affineInverse(A); |
|
|
|
for(glm::length_t i = 0; i < A.length(); ++i) |
|
{ |
|
Error += glm::all(glm::epsilonEqual(M[i], R[i], 0.01f)) ? 0 : 1; |
|
Error += glm::all(glm::epsilonEqual(A[i], I[i], 0.01f)) ? 0 : 1; |
|
} |
|
} |
|
|
|
{ |
|
glm::mat4 const M( |
|
2.f, 0.f, 0.f, 0.f, |
|
0.f, 2.f, 0.f, 0.f, |
|
0.f, 0.f, 2.f, 0.f, |
|
0.f, 0.f, 0.f, 1.f); |
|
glm::mat4 const A = glm::affineInverse(M); |
|
glm::mat4 const I = glm::inverse(M); |
|
glm::mat4 const R = glm::affineInverse(A); |
|
|
|
for(glm::length_t i = 0; i < A.length(); ++i) |
|
{ |
|
Error += glm::all(glm::epsilonEqual(M[i], R[i], 0.01f)) ? 0 : 1; |
|
Error += glm::all(glm::epsilonEqual(A[i], I[i], 0.01f)) ? 0 : 1; |
|
} |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int main() |
|
{ |
|
int Error = 0; |
|
|
|
Error += test_affine(); |
|
|
|
return Error; |
|
} |
|
|