|
#include <glm/ext/scalar_integer.hpp> |
|
#include <glm/ext/scalar_int_sized.hpp> |
|
#include <glm/ext/scalar_uint_sized.hpp> |
|
#include <vector> |
|
#include <ctime> |
|
#include <cstdio> |
|
|
|
#if GLM_LANG & GLM_LANG_CXX11_FLAG |
|
#include <chrono> |
|
|
|
namespace isPowerOfTwo |
|
{ |
|
template<typename genType> |
|
struct type |
|
{ |
|
genType Value; |
|
bool Return; |
|
}; |
|
|
|
int test_int16() |
|
{ |
|
type<glm::int16> const Data[] = |
|
{ |
|
{0x0001, true}, |
|
{0x0002, true}, |
|
{0x0004, true}, |
|
{0x0080, true}, |
|
{0x0000, true}, |
|
{0x0003, false} |
|
}; |
|
|
|
int Error = 0; |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i) |
|
{ |
|
bool Result = glm::isPowerOfTwo(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_uint16() |
|
{ |
|
type<glm::uint16> const Data[] = |
|
{ |
|
{0x0001, true}, |
|
{0x0002, true}, |
|
{0x0004, true}, |
|
{0x0000, true}, |
|
{0x0000, true}, |
|
{0x0003, false} |
|
}; |
|
|
|
int Error = 0; |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i) |
|
{ |
|
bool Result = glm::isPowerOfTwo(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_int32() |
|
{ |
|
type<int> const Data[] = |
|
{ |
|
{0x00000001, true}, |
|
{0x00000002, true}, |
|
{0x00000004, true}, |
|
{0x0000000f, false}, |
|
{0x00000000, true}, |
|
{0x00000003, false} |
|
}; |
|
|
|
int Error = 0; |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) |
|
{ |
|
bool Result = glm::isPowerOfTwo(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_uint32() |
|
{ |
|
type<glm::uint> const Data[] = |
|
{ |
|
{0x00000001, true}, |
|
{0x00000002, true}, |
|
{0x00000004, true}, |
|
{0x80000000, true}, |
|
{0x00000000, true}, |
|
{0x00000003, false} |
|
}; |
|
|
|
int Error = 0; |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i) |
|
{ |
|
bool Result = glm::isPowerOfTwo(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error = 0; |
|
|
|
Error += test_int16(); |
|
Error += test_uint16(); |
|
Error += test_int32(); |
|
Error += test_uint32(); |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace nextPowerOfTwo_advanced |
|
{ |
|
template<typename genIUType> |
|
GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value) |
|
{ |
|
genIUType tmp = Value; |
|
genIUType result = genIUType(0); |
|
while(tmp) |
|
{ |
|
result = (tmp & (~tmp + 1)); |
|
tmp &= ~result; |
|
} |
|
return result; |
|
} |
|
|
|
template<typename genType> |
|
GLM_FUNC_QUALIFIER genType nextPowerOfTwo_loop(genType value) |
|
{ |
|
return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1; |
|
} |
|
|
|
template<typename genType> |
|
struct type |
|
{ |
|
genType Value; |
|
genType Return; |
|
}; |
|
|
|
int test_int32() |
|
{ |
|
type<glm::int32> const Data[] = |
|
{ |
|
{0x0000ffff, 0x00010000}, |
|
{-3, -4}, |
|
{-8, -8}, |
|
{0x00000001, 0x00000001}, |
|
{0x00000002, 0x00000002}, |
|
{0x00000004, 0x00000004}, |
|
{0x00000007, 0x00000008}, |
|
{0x0000fff0, 0x00010000}, |
|
{0x0000f000, 0x00010000}, |
|
{0x08000000, 0x08000000}, |
|
{0x00000000, 0x00000000}, |
|
{0x00000003, 0x00000004} |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i) |
|
{ |
|
glm::int32 Result = glm::nextPowerOfTwo(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test_uint32() |
|
{ |
|
type<glm::uint32> const Data[] = |
|
{ |
|
{0x00000001, 0x00000001}, |
|
{0x00000002, 0x00000002}, |
|
{0x00000004, 0x00000004}, |
|
{0x00000007, 0x00000008}, |
|
{0x0000ffff, 0x00010000}, |
|
{0x0000fff0, 0x00010000}, |
|
{0x0000f000, 0x00010000}, |
|
{0x80000000, 0x80000000}, |
|
{0x00000000, 0x00000000}, |
|
{0x00000003, 0x00000004} |
|
}; |
|
|
|
int Error(0); |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i) |
|
{ |
|
glm::uint32 Result = glm::nextPowerOfTwo(Data[i].Value); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int perf() |
|
{ |
|
int Error(0); |
|
|
|
std::vector<glm::uint> v; |
|
v.resize(100000000); |
|
|
|
std::clock_t Timestramp0 = std::clock(); |
|
|
|
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) |
|
v[i] = nextPowerOfTwo_loop(i); |
|
|
|
std::clock_t Timestramp1 = std::clock(); |
|
|
|
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) |
|
v[i] = glm::nextPowerOfTwo(i); |
|
|
|
std::clock_t Timestramp2 = std::clock(); |
|
|
|
std::printf("nextPowerOfTwo_loop: %d clocks\n", static_cast<int>(Timestramp1 - Timestramp0)); |
|
std::printf("glm::nextPowerOfTwo: %d clocks\n", static_cast<int>(Timestramp2 - Timestramp1)); |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error(0); |
|
|
|
Error += test_int32(); |
|
Error += test_uint32(); |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace prevPowerOfTwo |
|
{ |
|
template <typename T> |
|
int run() |
|
{ |
|
int Error = 0; |
|
|
|
T const A = glm::prevPowerOfTwo(static_cast<T>(7)); |
|
Error += A == static_cast<T>(4) ? 0 : 1; |
|
|
|
T const B = glm::prevPowerOfTwo(static_cast<T>(15)); |
|
Error += B == static_cast<T>(8) ? 0 : 1; |
|
|
|
T const C = glm::prevPowerOfTwo(static_cast<T>(31)); |
|
Error += C == static_cast<T>(16) ? 0 : 1; |
|
|
|
T const D = glm::prevPowerOfTwo(static_cast<T>(32)); |
|
Error += D == static_cast<T>(32) ? 0 : 1; |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error = 0; |
|
|
|
Error += run<glm::int8>(); |
|
Error += run<glm::int16>(); |
|
Error += run<glm::int32>(); |
|
Error += run<glm::int64>(); |
|
|
|
Error += run<glm::uint8>(); |
|
Error += run<glm::uint16>(); |
|
Error += run<glm::uint32>(); |
|
Error += run<glm::uint64>(); |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace nextPowerOfTwo |
|
{ |
|
template <typename T> |
|
int run() |
|
{ |
|
int Error = 0; |
|
|
|
T const A = glm::nextPowerOfTwo(static_cast<T>(7)); |
|
Error += A == static_cast<T>(8) ? 0 : 1; |
|
|
|
T const B = glm::nextPowerOfTwo(static_cast<T>(15)); |
|
Error += B == static_cast<T>(16) ? 0 : 1; |
|
|
|
T const C = glm::nextPowerOfTwo(static_cast<T>(31)); |
|
Error += C == static_cast<T>(32) ? 0 : 1; |
|
|
|
T const D = glm::nextPowerOfTwo(static_cast<T>(32)); |
|
Error += D == static_cast<T>(32) ? 0 : 1; |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error = 0; |
|
|
|
Error += run<glm::int8>(); |
|
Error += run<glm::int16>(); |
|
Error += run<glm::int32>(); |
|
Error += run<glm::int64>(); |
|
|
|
Error += run<glm::uint8>(); |
|
Error += run<glm::uint16>(); |
|
Error += run<glm::uint32>(); |
|
Error += run<glm::uint64>(); |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace prevMultiple |
|
{ |
|
template<typename genIUType> |
|
struct type |
|
{ |
|
genIUType Source; |
|
genIUType Multiple; |
|
genIUType Return; |
|
}; |
|
|
|
template <typename T> |
|
int run() |
|
{ |
|
type<T> const Data[] = |
|
{ |
|
{8, 3, 6}, |
|
{7, 7, 7} |
|
}; |
|
|
|
int Error = 0; |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) |
|
{ |
|
T const Result = glm::prevMultiple(Data[i].Source, Data[i].Multiple); |
|
Error += Data[i].Return == Result ? 0 : 1; |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error = 0; |
|
|
|
Error += run<glm::int8>(); |
|
Error += run<glm::int16>(); |
|
Error += run<glm::int32>(); |
|
Error += run<glm::int64>(); |
|
|
|
Error += run<glm::uint8>(); |
|
Error += run<glm::uint16>(); |
|
Error += run<glm::uint32>(); |
|
Error += run<glm::uint64>(); |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace nextMultiple |
|
{ |
|
static glm::uint const Multiples = 128; |
|
|
|
int perf_nextMultiple(glm::uint Samples) |
|
{ |
|
std::vector<glm::uint> Results(Samples * Multiples); |
|
|
|
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); |
|
|
|
for(glm::uint Source = 0; Source < Samples; ++Source) |
|
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) |
|
{ |
|
Results[Source * Multiples + Multiple] = glm::nextMultiple(Source, Multiples); |
|
} |
|
|
|
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); |
|
|
|
std::printf("- glm::nextMultiple Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); |
|
|
|
glm::uint Result = 0; |
|
for(std::size_t i = 0, n = Results.size(); i < n; ++i) |
|
Result += Results[i]; |
|
|
|
return Result > 0 ? 0 : 1; |
|
} |
|
|
|
template <typename T> |
|
GLM_FUNC_QUALIFIER T nextMultipleMod(T Source, T Multiple) |
|
{ |
|
T const Tmp = Source - static_cast<T>(1); |
|
return Tmp + (Multiple - (Tmp % Multiple)); |
|
} |
|
|
|
int perf_nextMultipleMod(glm::uint Samples) |
|
{ |
|
std::vector<glm::uint> Results(Samples * Multiples); |
|
|
|
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); |
|
|
|
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) |
|
for (glm::uint Source = 0; Source < Samples; ++Source) |
|
{ |
|
Results[Source * Multiples + Multiple] = nextMultipleMod(Source, Multiples); |
|
} |
|
|
|
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); |
|
|
|
std::printf("- nextMultipleMod Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); |
|
|
|
glm::uint Result = 0; |
|
for(std::size_t i = 0, n = Results.size(); i < n; ++i) |
|
Result += Results[i]; |
|
|
|
return Result > 0 ? 0 : 1; |
|
} |
|
|
|
template <typename T> |
|
GLM_FUNC_QUALIFIER T nextMultipleNeg(T Source, T Multiple) |
|
{ |
|
if(Source > static_cast<T>(0)) |
|
{ |
|
T const Tmp = Source - static_cast<T>(1); |
|
return Tmp + (Multiple - (Tmp % Multiple)); |
|
} |
|
else |
|
return Source + (-Source % Multiple); |
|
} |
|
|
|
int perf_nextMultipleNeg(glm::uint Samples) |
|
{ |
|
std::vector<glm::uint> Results(Samples * Multiples); |
|
|
|
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); |
|
|
|
for(glm::uint Source = 0; Source < Samples; ++Source) |
|
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) |
|
{ |
|
Results[Source * Multiples + Multiple] = nextMultipleNeg(Source, Multiples); |
|
} |
|
|
|
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); |
|
|
|
std::printf("- nextMultipleNeg Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); |
|
|
|
glm::uint Result = 0; |
|
for (std::size_t i = 0, n = Results.size(); i < n; ++i) |
|
Result += Results[i]; |
|
|
|
return Result > 0 ? 0 : 1; |
|
} |
|
|
|
template <typename T> |
|
GLM_FUNC_QUALIFIER T nextMultipleUFloat(T Source, T Multiple) |
|
{ |
|
return Source + (Multiple - std::fmod(Source, Multiple)); |
|
} |
|
|
|
int perf_nextMultipleUFloat(glm::uint Samples) |
|
{ |
|
std::vector<float> Results(Samples * Multiples); |
|
|
|
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); |
|
|
|
for(glm::uint Source = 0; Source < Samples; ++Source) |
|
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) |
|
{ |
|
Results[Source * Multiples + Multiple] = nextMultipleUFloat(static_cast<float>(Source), static_cast<float>(Multiples)); |
|
} |
|
|
|
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); |
|
|
|
std::printf("- nextMultipleUFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); |
|
|
|
float Result = 0; |
|
for (std::size_t i = 0, n = Results.size(); i < n; ++i) |
|
Result += Results[i]; |
|
|
|
return Result > 0.0f ? 0 : 1; |
|
} |
|
|
|
template <typename T> |
|
GLM_FUNC_QUALIFIER T nextMultipleFloat(T Source, T Multiple) |
|
{ |
|
if(Source > static_cast<float>(0)) |
|
return Source + (Multiple - std::fmod(Source, Multiple)); |
|
else |
|
return Source + std::fmod(-Source, Multiple); |
|
} |
|
|
|
int perf_nextMultipleFloat(glm::uint Samples) |
|
{ |
|
std::vector<float> Results(Samples * Multiples); |
|
|
|
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); |
|
|
|
for(glm::uint Source = 0; Source < Samples; ++Source) |
|
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) |
|
{ |
|
Results[Source * Multiples + Multiple] = nextMultipleFloat(static_cast<float>(Source), static_cast<float>(Multiples)); |
|
} |
|
|
|
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); |
|
|
|
std::printf("- nextMultipleFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); |
|
|
|
float Result = 0; |
|
for (std::size_t i = 0, n = Results.size(); i < n; ++i) |
|
Result += Results[i]; |
|
|
|
return Result > 0.0f ? 0 : 1; |
|
} |
|
|
|
template<typename genIUType> |
|
struct type |
|
{ |
|
genIUType Source; |
|
genIUType Multiple; |
|
genIUType Return; |
|
}; |
|
|
|
template <typename T> |
|
int test_uint() |
|
{ |
|
type<T> const Data[] = |
|
{ |
|
{ 3, 4, 4 }, |
|
{ 6, 3, 6 }, |
|
{ 5, 3, 6 }, |
|
{ 7, 7, 7 }, |
|
{ 0, 1, 0 }, |
|
{ 8, 3, 9 } |
|
}; |
|
|
|
int Error = 0; |
|
|
|
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) |
|
{ |
|
T const Result0 = glm::nextMultiple(Data[i].Source, Data[i].Multiple); |
|
Error += Data[i].Return == Result0 ? 0 : 1; |
|
assert(!Error); |
|
|
|
T const Result1 = nextMultipleMod(Data[i].Source, Data[i].Multiple); |
|
Error += Data[i].Return == Result1 ? 0 : 1; |
|
assert(!Error); |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int perf() |
|
{ |
|
int Error = 0; |
|
|
|
glm::uint const Samples = 10000; |
|
|
|
for(int i = 0; i < 4; ++i) |
|
{ |
|
std::printf("Run %d :\n", i); |
|
Error += perf_nextMultiple(Samples); |
|
Error += perf_nextMultipleMod(Samples); |
|
Error += perf_nextMultipleNeg(Samples); |
|
Error += perf_nextMultipleUFloat(Samples); |
|
Error += perf_nextMultipleFloat(Samples); |
|
std::printf("\n"); |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error = 0; |
|
|
|
Error += test_uint<glm::int8>(); |
|
Error += test_uint<glm::int16>(); |
|
Error += test_uint<glm::int32>(); |
|
Error += test_uint<glm::int64>(); |
|
|
|
Error += test_uint<glm::uint8>(); |
|
Error += test_uint<glm::uint16>(); |
|
Error += test_uint<glm::uint32>(); |
|
Error += test_uint<glm::uint64>(); |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
namespace findNSB |
|
{ |
|
template<typename T> |
|
struct type |
|
{ |
|
T Source; |
|
int SignificantBitCount; |
|
int Return; |
|
}; |
|
|
|
template <typename T> |
|
int run() |
|
{ |
|
type<T> const Data[] = |
|
{ |
|
{ 0x00, 1,-1 }, |
|
{ 0x01, 2,-1 }, |
|
{ 0x02, 2,-1 }, |
|
{ 0x06, 3,-1 }, |
|
{ 0x01, 1, 0 }, |
|
{ 0x03, 1, 0 }, |
|
{ 0x03, 2, 1 }, |
|
{ 0x07, 2, 1 }, |
|
{ 0x05, 2, 2 }, |
|
{ 0x0D, 2, 2 } |
|
}; |
|
|
|
int Error = 0; |
|
|
|
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) |
|
{ |
|
int const Result0 = glm::findNSB(Data[i].Source, Data[i].SignificantBitCount); |
|
Error += Data[i].Return == Result0 ? 0 : 1; |
|
assert(!Error); |
|
} |
|
|
|
return Error; |
|
} |
|
|
|
int test() |
|
{ |
|
int Error = 0; |
|
|
|
Error += run<glm::uint8>(); |
|
Error += run<glm::uint16>(); |
|
Error += run<glm::uint32>(); |
|
Error += run<glm::uint64>(); |
|
|
|
Error += run<glm::int8>(); |
|
Error += run<glm::int16>(); |
|
Error += run<glm::int32>(); |
|
Error += run<glm::int64>(); |
|
|
|
return Error; |
|
} |
|
} |
|
|
|
int main() |
|
{ |
|
int Error = 0; |
|
|
|
Error += findNSB::test(); |
|
|
|
Error += isPowerOfTwo::test(); |
|
Error += prevPowerOfTwo::test(); |
|
Error += nextPowerOfTwo::test(); |
|
Error += nextPowerOfTwo_advanced::test(); |
|
Error += prevMultiple::test(); |
|
Error += nextMultiple::test(); |
|
|
|
# ifdef NDEBUG |
|
Error += nextPowerOfTwo_advanced::perf(); |
|
Error += nextMultiple::perf(); |
|
# endif |
|
|
|
return Error; |
|
} |
|
|
|
#else |
|
|
|
int main() |
|
{ |
|
return 0; |
|
} |
|
|
|
#endif |
|
|