import gradio as gr from fastai.learner import load_learner categories = 'grizzly','black','teddy' learn_inf = load_learner('model/trained_image_model.pkl') def classify_image(img): pred, idx, probs = learn_inf.predict(img) return dict(zip(categories, map(float, probs))) image = gr.Image() label = gr.Label() examples = ["images/grizzly.jpg"] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False, share=False) # intf.launch(inline=False, share=True, auth=("admin", "pass1234")) # demo = gr.Interface( # fn=greet, # inputs=["text", "slider"], # outputs=["text"], # analytics_enabled=False # ) # demo.launch(auth=("admin", "pass1234"), share=True)