Commit 
							
							·
						
						e1043c6
	
1
								Parent(s):
							
							d1ca5fe
								
add prediction submission
Browse files- eval_utils.py +435 -0
- evaluation_results.json +38 -0
- labels.txt +12 -0
- lner-text.json +0 -0
- lsi_label_vocab.json +102 -0
- ner_helpers.py +141 -0
- requirements.txt +2 -1
- submissions/baseline/IL_TUR_eval_gold_small.json +0 -0
- submissions/baseline/IL_TUR_eval_submission_small.json +0 -0
- uploads.py +19 -3
    	
        eval_utils.py
    ADDED
    
    | @@ -0,0 +1,435 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import json
         | 
| 2 | 
            +
            import re
         | 
| 3 | 
            +
            from collections import defaultdict
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import evaluate
         | 
| 6 | 
            +
            import nltk
         | 
| 7 | 
            +
            import numpy as np
         | 
| 8 | 
            +
            from nervaluate import Evaluator
         | 
| 9 | 
            +
            from rouge_score import rouge_scorer
         | 
| 10 | 
            +
            from sacrebleu.metrics import BLEU, CHRF
         | 
| 11 | 
            +
            from sklearn.metrics import f1_score
         | 
| 12 | 
            +
            from tqdm import tqdm
         | 
| 13 | 
            +
            from transformers import AutoTokenizer
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            from ner_helpers import span2bio
         | 
| 16 | 
            +
             | 
| 17 | 
            +
             | 
| 18 | 
            +
            def load_json(file_path):
         | 
| 19 | 
            +
                with open(file_path, "r") as f:
         | 
| 20 | 
            +
                    return json.load(f)
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            def get_micro_at_k(gold, pred, k):
         | 
| 24 | 
            +
                gold_set = set(gold)
         | 
| 25 | 
            +
                pred_set = set(pred[:k])
         | 
| 26 | 
            +
                return len(gold_set & pred_set), len(gold_set), len(pred_set)
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            def evaluate_bail(gold_data, pred_data):
         | 
| 30 | 
            +
                gold_labels = []
         | 
| 31 | 
            +
                pred_labels = []
         | 
| 32 | 
            +
                for id, label in gold_data.items():
         | 
| 33 | 
            +
                    gold_labels.append(label)
         | 
| 34 | 
            +
                    pred_labels.append(pred_data.get(id, 0))
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                f1 = f1_score(gold_labels, pred_labels, average="macro")
         | 
| 37 | 
            +
                print("Macro-F1 on HLDC-all-districts test set:", f1)
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                return f"{f1:.2f}"
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            def evaluate_cjpe(gold_data, pred_data):
         | 
| 43 | 
            +
                # Evaluate prediction
         | 
| 44 | 
            +
                gold_labels = []
         | 
| 45 | 
            +
                pred_labels = []
         | 
| 46 | 
            +
                for id, label in gold_data["prediction"].items():
         | 
| 47 | 
            +
                    gold_labels.append(label)
         | 
| 48 | 
            +
                    pred_labels.append(pred_data["prediction"].get(id, 0))
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                f1 = f1_score(gold_labels, pred_labels, average="macro")
         | 
| 51 | 
            +
                prediction_result = {"cjpe-eval": f1}
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                # Evaluate explanation
         | 
| 54 | 
            +
                rouge = evaluate.load("rouge")
         | 
| 55 | 
            +
                bleu = evaluate.load("bleu")
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                gold_explanations = [exp["expert_1"] for exp in gold_data["explanation"].values()]
         | 
| 58 | 
            +
                pred_explanations = [exp["expert_1"] for exp in pred_data["explanation"].values()]
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                rouge_scores = rouge.compute(
         | 
| 61 | 
            +
                    predictions=pred_explanations, references=gold_explanations
         | 
| 62 | 
            +
                )
         | 
| 63 | 
            +
                bleu_score = bleu.compute(
         | 
| 64 | 
            +
                    predictions=pred_explanations, references=gold_explanations
         | 
| 65 | 
            +
                )
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                explanation_result = {
         | 
| 68 | 
            +
                    "cjpe-exp-eval": {
         | 
| 69 | 
            +
                        "rouge": [rouge_scores],
         | 
| 70 | 
            +
                        "bleu": [bleu_score],
         | 
| 71 | 
            +
                    }
         | 
| 72 | 
            +
                }
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                return {**prediction_result, **explanation_result}
         | 
| 75 | 
            +
             | 
| 76 | 
            +
             | 
| 77 | 
            +
            def evaluate_lner(gold_data, pred_data, text_data):
         | 
| 78 | 
            +
                with open("labels.txt") as f:
         | 
| 79 | 
            +
                    labels = f.read().strip().split("\n")
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                results_per_fold = {}
         | 
| 82 | 
            +
                for fold in range(1, 4):
         | 
| 83 | 
            +
                    gold = gold_data[f"fold_{fold}"]
         | 
| 84 | 
            +
                    pred = pred_data[f"fold_{fold}"]
         | 
| 85 | 
            +
                    text = text_data[f"fold_{fold}"]
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    texts, gold_labels, pred_labels = [], [], []
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    for id, gold_label in tqdm(gold.items()):
         | 
| 90 | 
            +
                        txt = text[id]
         | 
| 91 | 
            +
                        pred_label = pred.get(id, [])
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                        txt_seg, gold_bio = span2bio(txt, gold_label)
         | 
| 94 | 
            +
                        _, pred_bio = span2bio(txt, pred_label)
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                        texts.append(txt_seg)
         | 
| 97 | 
            +
                        gold_labels.append(gold_bio)
         | 
| 98 | 
            +
                        pred_labels.append(pred_bio)
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                    evaluator = Evaluator(gold_labels, pred_labels, tags=labels, loader="list")
         | 
| 101 | 
            +
                    results, results_per_tag, _, _ = evaluator.evaluate()
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                    f1_scores = [results_per_tag[l]["strict"]["f1"] for l in results_per_tag]
         | 
| 104 | 
            +
                    avg_f1 = sum(f1_scores) / len(f1_scores)
         | 
| 105 | 
            +
                    print(f"Strict Macro-F1 on Fold {fold}:", avg_f1)
         | 
| 106 | 
            +
                    results_per_fold[f"fold_{fold}"] = avg_f1
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                return {"strict mF1": f"{np.mean(list(results_per_fold.values()))}:.2f"}
         | 
| 109 | 
            +
             | 
| 110 | 
            +
             | 
| 111 | 
            +
            def evaluate_rr(gold_data, pred_data):
         | 
| 112 | 
            +
                all_gold_labels = []
         | 
| 113 | 
            +
                all_pred_labels = []
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                for id, gold_labels in gold_data.items():
         | 
| 116 | 
            +
                    pred_labels = pred_data.get(id, ["None"] * len(gold_labels))
         | 
| 117 | 
            +
                    all_gold_labels.extend(gold_labels)
         | 
| 118 | 
            +
                    all_pred_labels.extend(pred_labels)
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                mf1 = f1_score(all_gold_labels, all_pred_labels, average="macro")
         | 
| 121 | 
            +
                print(f"Macro-F1 on combined test set:", mf1)
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                return {"mF1": f"{mf1:.2f}"}
         | 
| 124 | 
            +
             | 
| 125 | 
            +
             | 
| 126 | 
            +
            def evaluate_lsi(gold_data, pred_data):
         | 
| 127 | 
            +
                with open("lsi_label_vocab.json") as f:
         | 
| 128 | 
            +
                    label_vocab = json.load(f)
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                gold_matrix = np.zeros((len(gold_data), len(label_vocab)))
         | 
| 131 | 
            +
                pred_matrix = np.zeros((len(gold_data), len(label_vocab)))
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                for i, (id, gold_labels) in enumerate(gold_data.items()):
         | 
| 134 | 
            +
                    pred_labels = pred_data.get(id, [])
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                    for label in gold_labels:
         | 
| 137 | 
            +
                        if label in label_vocab:
         | 
| 138 | 
            +
                            gold_matrix[i, label_vocab[label]] = 1
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                    for label in pred_labels:
         | 
| 141 | 
            +
                        if label in label_vocab:
         | 
| 142 | 
            +
                            pred_matrix[i, label_vocab[label]] = 1
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                f1 = f1_score(gold_matrix, pred_matrix, average="macro")
         | 
| 145 | 
            +
                print("Macro-F1 on ILSI test set:", f1)
         | 
| 146 | 
            +
                return f1
         | 
| 147 | 
            +
             | 
| 148 | 
            +
             | 
| 149 | 
            +
            def evaluate_pcr(gold_data, pred_data):
         | 
| 150 | 
            +
                f1_scores = []
         | 
| 151 | 
            +
                for k in range(1, 21):
         | 
| 152 | 
            +
                    correct, gold_total, pred_total = 0, 0, 0
         | 
| 153 | 
            +
                    for id, gold_candidates in gold_data.items():
         | 
| 154 | 
            +
                        pred_candidates = pred_data.get(id, [])
         | 
| 155 | 
            +
                        gold_candidates = [c for c in gold_candidates if c != id]
         | 
| 156 | 
            +
                        pred_candidates = [c for c in pred_candidates if c != id]
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                        c, g, p = get_micro_at_k(gold_candidates, pred_candidates, k)
         | 
| 159 | 
            +
                        correct += c
         | 
| 160 | 
            +
                        gold_total += g
         | 
| 161 | 
            +
                        pred_total += p
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                    precision = correct / pred_total if pred_total > 0 else 0
         | 
| 164 | 
            +
                    recall = correct / gold_total if gold_total > 0 else 0
         | 
| 165 | 
            +
                    f1 = (
         | 
| 166 | 
            +
                        2 * precision * recall / (precision + recall)
         | 
| 167 | 
            +
                        if precision + recall > 0
         | 
| 168 | 
            +
                        else 0
         | 
| 169 | 
            +
                    )
         | 
| 170 | 
            +
                    f1_scores.append(f1)
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    print(f"Micro-F1@{k} on IL-PCR test set:", f1)
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                return np.mean(f1_scores)
         | 
| 175 | 
            +
             | 
| 176 | 
            +
             | 
| 177 | 
            +
            def evaluate_summ(gold_data, pred_data):
         | 
| 178 | 
            +
                gold_summaries = []
         | 
| 179 | 
            +
                pred_summaries = []
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                for id, gold_summary in gold_data.items():
         | 
| 182 | 
            +
                    if id in pred_data:
         | 
| 183 | 
            +
                        gold_summary = re.sub(r"\s+", " ", gold_summary.replace("\n", " ")).strip()
         | 
| 184 | 
            +
                        pred_summary = re.sub(r"\s+", " ", pred_data[id].replace("\n", " ")).strip()
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                        gold_summaries.append(gold_summary)
         | 
| 187 | 
            +
                        pred_summaries.append(pred_summary)
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                rouge = evaluate.load("rouge")
         | 
| 190 | 
            +
                rouge_scores = rouge.compute(predictions=pred_summaries, references=gold_summaries)
         | 
| 191 | 
            +
                print("Rouge-L:", rouge_scores)
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                return {"ROUGE-L": rouge_scores, "BERTSCORE": "-"}
         | 
| 194 | 
            +
             | 
| 195 | 
            +
             | 
| 196 | 
            +
            def evaluate_lmt(gold_data, pred_data):
         | 
| 197 | 
            +
                tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-bert")
         | 
| 198 | 
            +
                bleu = BLEU()
         | 
| 199 | 
            +
                chrfp = CHRF(word_order=2)
         | 
| 200 | 
            +
                gleu = evaluate.load("google_bleu")
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                G = defaultdict(lambda: defaultdict(list))
         | 
| 203 | 
            +
                P = defaultdict(lambda: defaultdict(list))
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                for dataset in gold_data:
         | 
| 206 | 
            +
                    for id, gold_text in gold_data[dataset].items():
         | 
| 207 | 
            +
                        lang = id.split("/")[1].strip()
         | 
| 208 | 
            +
                        gold_tokens = " ".join(tokenizer.tokenize(gold_text))
         | 
| 209 | 
            +
                        pred_tokens = " ".join(tokenizer.tokenize(pred_data[dataset][id]))
         | 
| 210 | 
            +
                        G[dataset][lang].append(gold_tokens)
         | 
| 211 | 
            +
                        P[dataset][lang].append(pred_tokens)
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                bleu_scores, chrfpp_scores, gleu_scores = [], [], []
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                for dataset in G:
         | 
| 216 | 
            +
                    print("Dataset", dataset)
         | 
| 217 | 
            +
                    dataset_bleu, dataset_chrfpp, dataset_gleu = [], [], []
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    for lang in G[dataset]:
         | 
| 220 | 
            +
                        gold = G[dataset][lang]
         | 
| 221 | 
            +
                        pred = P[dataset][lang]
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                        bleu_score = bleu.corpus_score(pred, [gold]).score
         | 
| 224 | 
            +
                        chrfpp_score = chrfp.corpus_score(pred, [gold]).score
         | 
| 225 | 
            +
                        gleu_score = gleu.compute(predictions=pred, references=gold)["google_bleu"]
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                        dataset_bleu.append(bleu_score)
         | 
| 228 | 
            +
                        dataset_chrfpp.append(chrfpp_score)
         | 
| 229 | 
            +
                        dataset_gleu.append(gleu_score)
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                    bleu_scores.append(sum(dataset_bleu) / len(dataset_bleu))
         | 
| 232 | 
            +
                    chrfpp_scores.append(sum(dataset_chrfpp) / len(dataset_chrfpp))
         | 
| 233 | 
            +
                    gleu_scores.append(sum(dataset_gleu) / len(dataset_gleu))
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                return {
         | 
| 236 | 
            +
                    "BLEU": sum(bleu_scores) / len(bleu_scores),
         | 
| 237 | 
            +
                    "GLEU": sum(gleu_scores) / len(gleu_scores),
         | 
| 238 | 
            +
                    "chrF++": sum(chrfpp_scores) / len(chrfpp_scores),
         | 
| 239 | 
            +
                }
         | 
| 240 | 
            +
             | 
| 241 | 
            +
             | 
| 242 | 
            +
            def create_output_json(evaluation_results):
         | 
| 243 | 
            +
                output = {
         | 
| 244 | 
            +
                    "Method": "GPT-5 (2-shot)",
         | 
| 245 | 
            +
                    "Submitted By": "IL-TUR",
         | 
| 246 | 
            +
                    "Github Link": "dummy submission",
         | 
| 247 | 
            +
                    "L-NER": {"strict mF1": evaluation_results["lner"]["strict mF1"]},
         | 
| 248 | 
            +
                    "RR": {"mF1": evaluation_results["rr"]["mF1"]},
         | 
| 249 | 
            +
                    "CJPE": {
         | 
| 250 | 
            +
                        "mF1": evaluation_results["cjpe"]["mF1"],
         | 
| 251 | 
            +
                        "ROUGE-L": evaluation_results["cjpe"]["ROUGE-L"],
         | 
| 252 | 
            +
                        "BLEU": evaluation_results["cjpe"]["BLEU"],
         | 
| 253 | 
            +
                    },
         | 
| 254 | 
            +
                    "BAIL": {"mF1": evaluation_results["bail"]},
         | 
| 255 | 
            +
                    "LSI": {"mF1": evaluation_results["lsi"]},
         | 
| 256 | 
            +
                    "PCR": {"muF1@K": evaluation_results["pcr"]},
         | 
| 257 | 
            +
                    "SUMM": {
         | 
| 258 | 
            +
                        "ROUGE-L": evaluation_results["summ"]["ROUGE-L"],
         | 
| 259 | 
            +
                        "BERTSCORE": "-",  # Placeholder BERTSCORE
         | 
| 260 | 
            +
                    },
         | 
| 261 | 
            +
                    "L-MT": {
         | 
| 262 | 
            +
                        "BLEU": evaluation_results["lmt"]["BLEU"],
         | 
| 263 | 
            +
                        "GLEU": evaluation_results["lmt"]["GLEU"],
         | 
| 264 | 
            +
                        "chrF++": evaluation_results["lmt"]["chrF++"],
         | 
| 265 | 
            +
                    },
         | 
| 266 | 
            +
                }
         | 
| 267 | 
            +
                return [output]  # Wrap in a list to match the desired format
         | 
| 268 | 
            +
             | 
| 269 | 
            +
             | 
| 270 | 
            +
            def main():
         | 
| 271 | 
            +
                # gold_data = load_json("IL_TUR_eval_gold.json")
         | 
| 272 | 
            +
                # pred_data = load_json("IL_TUR_eval_submission2.json")
         | 
| 273 | 
            +
                gold_data = load_json("submissions/baseline/IL_TUR_eval_gold_small.json")
         | 
| 274 | 
            +
                pred_data = load_json("submissions/baseline/IL_TUR_eval_submission_small.json")
         | 
| 275 | 
            +
                pred_data = gold_data
         | 
| 276 | 
            +
                evaluation_results = {}
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                for task in pred_data.keys():
         | 
| 279 | 
            +
                    print(f"Task: {task}")
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                    if task == "bail":
         | 
| 282 | 
            +
                        evaluation_results[task] = evaluate_bail(gold_data[task], pred_data[task])
         | 
| 283 | 
            +
                    elif task == "cjpe":
         | 
| 284 | 
            +
                        evaluation_results.update(evaluate_cjpe(gold_data[task], pred_data[task]))
         | 
| 285 | 
            +
                    elif task == "lner":
         | 
| 286 | 
            +
                        text_data = load_json("lner-text.json")
         | 
| 287 | 
            +
                        evaluation_results[task] = evaluate_lner(
         | 
| 288 | 
            +
                            gold_data[task], pred_data[task], text_data
         | 
| 289 | 
            +
                        )
         | 
| 290 | 
            +
                    elif task == "rr":
         | 
| 291 | 
            +
                        evaluation_results[task] = evaluate_rr(gold_data[task], pred_data[task])
         | 
| 292 | 
            +
                    elif task == "lsi":
         | 
| 293 | 
            +
                        evaluation_results[task] = evaluate_lsi(gold_data[task], pred_data[task])
         | 
| 294 | 
            +
                    elif task == "pcr":
         | 
| 295 | 
            +
                        evaluation_results[task] = evaluate_pcr(gold_data[task], pred_data[task])
         | 
| 296 | 
            +
                    elif task == "summ":
         | 
| 297 | 
            +
                        evaluation_results[task] = evaluate_summ(gold_data[task], pred_data[task])
         | 
| 298 | 
            +
                    elif task == "lmt":
         | 
| 299 | 
            +
                        evaluation_results[task] = evaluate_lmt(gold_data[task], pred_data[task])
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                # convert the evaluation results to the required format
         | 
| 302 | 
            +
                for task, result in evaluation_results.items():
         | 
| 303 | 
            +
                    if isinstance(result, dict):
         | 
| 304 | 
            +
                        for subtask, subresult in result.items():
         | 
| 305 | 
            +
                            if isinstance(subresult, dict):
         | 
| 306 | 
            +
                                for subsubtask, subsubresult in subresult.items():
         | 
| 307 | 
            +
                                    evaluation_results[task][subtask][
         | 
| 308 | 
            +
                                        subsubtask
         | 
| 309 | 
            +
                                    ] = f"{subsubresult:.2f}"
         | 
| 310 | 
            +
                            else:
         | 
| 311 | 
            +
                                if isinstance(subresult, str):
         | 
| 312 | 
            +
                                    evaluation_results[task][subtask] = subresult
         | 
| 313 | 
            +
                                else:
         | 
| 314 | 
            +
                                    evaluation_results[task][subtask] = f"{subresult:.2f}"
         | 
| 315 | 
            +
                    else:
         | 
| 316 | 
            +
                        if isinstance(result, str):
         | 
| 317 | 
            +
                            evaluation_results[task] = result
         | 
| 318 | 
            +
                        else:
         | 
| 319 | 
            +
                            evaluation_results[task] = f"{result:.2f}"
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                blank_scores = {
         | 
| 322 | 
            +
                    "lner": {"strict mF1": "-"},
         | 
| 323 | 
            +
                    "rr": {"mF1": "-"},
         | 
| 324 | 
            +
                    "cjpe": {"mF1": "-", "ROUGE-L": "-", "BLEU": "-"},
         | 
| 325 | 
            +
                    "bail": {"mF1": "-"},
         | 
| 326 | 
            +
                    "lsi": {"mF1": "-"},
         | 
| 327 | 
            +
                    "pcr": {"muF1@K": "-"},
         | 
| 328 | 
            +
                    "summ": {"ROUGE-L": "-", "BERTSCORE": "-"},
         | 
| 329 | 
            +
                    "lmt": {"BLEU": "-", "GLEU": "-", "chrF++": "-"},
         | 
| 330 | 
            +
                }
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                print("--------------------------Evaluation Summary--------------------------")
         | 
| 333 | 
            +
                for task, result in evaluation_results.items():
         | 
| 334 | 
            +
                    print(f"{task}: {result}")
         | 
| 335 | 
            +
                print("---------------------------------------------------------------------")
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                # for tasks that were not present in the submission, add blank scores
         | 
| 338 | 
            +
                for task in gold_data.keys():
         | 
| 339 | 
            +
                    if task not in pred_data:
         | 
| 340 | 
            +
                        evaluation_results[task] = blank_scores[task]
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                # Generate the output JSON
         | 
| 343 | 
            +
                output_json = create_output_json(evaluation_results)
         | 
| 344 | 
            +
                with open("evaluation_results.json", "w") as f:
         | 
| 345 | 
            +
                    json.dump(output_json, f, indent=2)
         | 
| 346 | 
            +
                print("Evaluation results saved to evaluation_results.json")
         | 
| 347 | 
            +
             | 
| 348 | 
            +
             | 
| 349 | 
            +
            def get_evaluation_scores(gold_data, submission_data):
         | 
| 350 | 
            +
                evaluation_results = {}
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                for task in submission_data.keys():
         | 
| 353 | 
            +
                    print(f"Task: {task}")
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                    if task == "bail":
         | 
| 356 | 
            +
                        evaluation_results[task] = evaluate_bail(
         | 
| 357 | 
            +
                            gold_data[task], submission_data[task]
         | 
| 358 | 
            +
                        )
         | 
| 359 | 
            +
                    elif task == "cjpe":
         | 
| 360 | 
            +
                        evaluation_results.update(
         | 
| 361 | 
            +
                            evaluate_cjpe(gold_data[task], submission_data[task])
         | 
| 362 | 
            +
                        )
         | 
| 363 | 
            +
                    elif task == "lner":
         | 
| 364 | 
            +
                        text_data = load_json("lner-text.json")
         | 
| 365 | 
            +
                        evaluation_results[task] = evaluate_lner(
         | 
| 366 | 
            +
                            gold_data[task], submission_data[task], text_data
         | 
| 367 | 
            +
                        )
         | 
| 368 | 
            +
                    elif task == "rr":
         | 
| 369 | 
            +
                        evaluation_results[task] = evaluate_rr(
         | 
| 370 | 
            +
                            gold_data[task], submission_data[task]
         | 
| 371 | 
            +
                        )
         | 
| 372 | 
            +
                    elif task == "lsi":
         | 
| 373 | 
            +
                        evaluation_results[task] = evaluate_lsi(
         | 
| 374 | 
            +
                            gold_data[task], submission_data[task]
         | 
| 375 | 
            +
                        )
         | 
| 376 | 
            +
                    elif task == "pcr":
         | 
| 377 | 
            +
                        evaluation_results[task] = evaluate_pcr(
         | 
| 378 | 
            +
                            gold_data[task], submission_data[task]
         | 
| 379 | 
            +
                        )
         | 
| 380 | 
            +
                    elif task == "summ":
         | 
| 381 | 
            +
                        evaluation_results[task] = evaluate_summ(
         | 
| 382 | 
            +
                            gold_data[task], submission_data[task]
         | 
| 383 | 
            +
                        )
         | 
| 384 | 
            +
                    elif task == "lmt":
         | 
| 385 | 
            +
                        evaluation_results[task] = evaluate_lmt(
         | 
| 386 | 
            +
                            gold_data[task], submission_data[task]
         | 
| 387 | 
            +
                        )
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                # convert the evaluation results to the required format
         | 
| 390 | 
            +
                for task, result in evaluation_results.items():
         | 
| 391 | 
            +
                    if isinstance(result, dict):
         | 
| 392 | 
            +
                        for subtask, subresult in result.items():
         | 
| 393 | 
            +
                            if isinstance(subresult, dict):
         | 
| 394 | 
            +
                                for subsubtask, subsubresult in subresult.items():
         | 
| 395 | 
            +
                                    evaluation_results[task][subtask][
         | 
| 396 | 
            +
                                        subsubtask
         | 
| 397 | 
            +
                                    ] = f"{subsubresult:.2f}"
         | 
| 398 | 
            +
                            else:
         | 
| 399 | 
            +
                                if isinstance(subresult, str):
         | 
| 400 | 
            +
                                    evaluation_results[task][subtask] = subresult
         | 
| 401 | 
            +
                                else:
         | 
| 402 | 
            +
                                    evaluation_results[task][subtask] = f"{subresult:.2f}"
         | 
| 403 | 
            +
                    else:
         | 
| 404 | 
            +
                        if isinstance(result, str):
         | 
| 405 | 
            +
                            evaluation_results[task] = result
         | 
| 406 | 
            +
                        else:
         | 
| 407 | 
            +
                            evaluation_results[task] = f"{result:.2f}"
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                blank_scores = {
         | 
| 410 | 
            +
                    "lner": {"strict mF1": "-"},
         | 
| 411 | 
            +
                    "rr": {"mF1": "-"},
         | 
| 412 | 
            +
                    "cjpe": {"mF1": "-", "ROUGE-L": "-", "BLEU": "-"},
         | 
| 413 | 
            +
                    "bail": {"mF1": "-"},
         | 
| 414 | 
            +
                    "lsi": {"mF1": "-"},
         | 
| 415 | 
            +
                    "pcr": {"muF1@K": "-"},
         | 
| 416 | 
            +
                    "summ": {"ROUGE-L": "-", "BERTSCORE": "-"},
         | 
| 417 | 
            +
                    "lmt": {"BLEU": "-", "GLEU": "-", "chrF++": "-"},
         | 
| 418 | 
            +
                }
         | 
| 419 | 
            +
             | 
| 420 | 
            +
                # for tasks that were not present in the submission, add blank scores
         | 
| 421 | 
            +
                for task in gold_data.keys():
         | 
| 422 | 
            +
                    if task not in submission_data:
         | 
| 423 | 
            +
                        evaluation_results[task] = blank_scores[task]
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                print("--------------------------Evaluation Summary--------------------------")
         | 
| 426 | 
            +
                for task, result in evaluation_results.items():
         | 
| 427 | 
            +
                    print(f"{task}: {result}")
         | 
| 428 | 
            +
                print("---------------------------------------------------------------------")
         | 
| 429 | 
            +
                output_json = create_output_json(evaluation_results)
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                return output_json
         | 
| 432 | 
            +
             | 
| 433 | 
            +
             | 
| 434 | 
            +
            if __name__ == "__main__":
         | 
| 435 | 
            +
                main()
         | 
    	
        evaluation_results.json
    ADDED
    
    | @@ -0,0 +1,38 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            [
         | 
| 2 | 
            +
              {
         | 
| 3 | 
            +
                "Method": "GPT-5 (2-shot)",
         | 
| 4 | 
            +
                "Submitted By": "IL-TUR",
         | 
| 5 | 
            +
                "Github Link": "dummy submission",
         | 
| 6 | 
            +
                "L-NER": {
         | 
| 7 | 
            +
                  "strict mF1": "-"
         | 
| 8 | 
            +
                },
         | 
| 9 | 
            +
                "RR": {
         | 
| 10 | 
            +
                  "mF1": {
         | 
| 11 | 
            +
                    "mF1": "0.10"
         | 
| 12 | 
            +
                  }
         | 
| 13 | 
            +
                },
         | 
| 14 | 
            +
                "CJPE": {
         | 
| 15 | 
            +
                  "mF1": "-",
         | 
| 16 | 
            +
                  "ROUGE-L": "-",
         | 
| 17 | 
            +
                  "BLEU": "-"
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                "BAIL": {
         | 
| 20 | 
            +
                  "mF1": "0.02"
         | 
| 21 | 
            +
                },
         | 
| 22 | 
            +
                "LSI": {
         | 
| 23 | 
            +
                  "mF1": "0.26"
         | 
| 24 | 
            +
                },
         | 
| 25 | 
            +
                "PCR": {
         | 
| 26 | 
            +
                  "muF1@K": "0.63"
         | 
| 27 | 
            +
                },
         | 
| 28 | 
            +
                "SUMM": {
         | 
| 29 | 
            +
                  "ROUGE-L": "-",
         | 
| 30 | 
            +
                  "BERTSCORE": "-"
         | 
| 31 | 
            +
                },
         | 
| 32 | 
            +
                "L-MT": {
         | 
| 33 | 
            +
                  "BLEU": "-",
         | 
| 34 | 
            +
                  "GLEU": "-",
         | 
| 35 | 
            +
                  "chrF++": "-"
         | 
| 36 | 
            +
                }
         | 
| 37 | 
            +
              }
         | 
| 38 | 
            +
            ]
         | 
    	
        labels.txt
    ADDED
    
    | @@ -0,0 +1,12 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            APP
         | 
| 2 | 
            +
            RESP
         | 
| 3 | 
            +
            A.COUNSEL
         | 
| 4 | 
            +
            R.COUNSEL
         | 
| 5 | 
            +
            JUDGE
         | 
| 6 | 
            +
            WIT
         | 
| 7 | 
            +
            AUTH
         | 
| 8 | 
            +
            COURT
         | 
| 9 | 
            +
            STAT
         | 
| 10 | 
            +
            PREC
         | 
| 11 | 
            +
            DATE
         | 
| 12 | 
            +
            CASENO
         | 
    	
        lner-text.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        lsi_label_vocab.json
    ADDED
    
    | @@ -0,0 +1,102 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "Section 2": 0,
         | 
| 3 | 
            +
                "Section 3": 1,
         | 
| 4 | 
            +
                "Section 4": 2,
         | 
| 5 | 
            +
                "Section 5": 3,
         | 
| 6 | 
            +
                "Section 13": 4,
         | 
| 7 | 
            +
                "Section 34": 5,
         | 
| 8 | 
            +
                "Section 107": 6,
         | 
| 9 | 
            +
                "Section 109": 7,
         | 
| 10 | 
            +
                "Section 114": 8,
         | 
| 11 | 
            +
                "Section 120": 9,
         | 
| 12 | 
            +
                "Section 120B": 10,
         | 
| 13 | 
            +
                "Section 143": 11,
         | 
| 14 | 
            +
                "Section 147": 12,
         | 
| 15 | 
            +
                "Section 148": 13,
         | 
| 16 | 
            +
                "Section 149": 14,
         | 
| 17 | 
            +
                "Section 155": 15,
         | 
| 18 | 
            +
                "Section 156": 16,
         | 
| 19 | 
            +
                "Section 161": 17,
         | 
| 20 | 
            +
                "Section 164": 18,
         | 
| 21 | 
            +
                "Section 173": 19,
         | 
| 22 | 
            +
                "Section 174A": 20,
         | 
| 23 | 
            +
                "Section 186": 21,
         | 
| 24 | 
            +
                "Section 188": 22,
         | 
| 25 | 
            +
                "Section 190": 23,
         | 
| 26 | 
            +
                "Section 193": 24,
         | 
| 27 | 
            +
                "Section 200": 25,
         | 
| 28 | 
            +
                "Section 201": 26,
         | 
| 29 | 
            +
                "Section 228": 27,
         | 
| 30 | 
            +
                "Section 229A": 28,
         | 
| 31 | 
            +
                "Section 279": 29,
         | 
| 32 | 
            +
                "Section 294": 30,
         | 
| 33 | 
            +
                "Section 294(b)": 31,
         | 
| 34 | 
            +
                "Section 299": 32,
         | 
| 35 | 
            +
                "Section 300": 33,
         | 
| 36 | 
            +
                "Section 302": 34,
         | 
| 37 | 
            +
                "Section 304": 35,
         | 
| 38 | 
            +
                "Section 304A": 36,
         | 
| 39 | 
            +
                "Section 304B": 37,
         | 
| 40 | 
            +
                "Section 306": 38,
         | 
| 41 | 
            +
                "Section 307": 39,
         | 
| 42 | 
            +
                "Section 308": 40,
         | 
| 43 | 
            +
                "Section 313": 41,
         | 
| 44 | 
            +
                "Section 320": 42,
         | 
| 45 | 
            +
                "Section 323": 43,
         | 
| 46 | 
            +
                "Section 324": 44,
         | 
| 47 | 
            +
                "Section 325": 45,
         | 
| 48 | 
            +
                "Section 326": 46,
         | 
| 49 | 
            +
                "Section 332": 47,
         | 
| 50 | 
            +
                "Section 336": 48,
         | 
| 51 | 
            +
                "Section 337": 49,
         | 
| 52 | 
            +
                "Section 338": 50,
         | 
| 53 | 
            +
                "Section 341": 51,
         | 
| 54 | 
            +
                "Section 342": 52,
         | 
| 55 | 
            +
                "Section 353": 53,
         | 
| 56 | 
            +
                "Section 354": 54,
         | 
| 57 | 
            +
                "Section 363": 55,
         | 
| 58 | 
            +
                "Section 364": 56,
         | 
| 59 | 
            +
                "Section 365": 57,
         | 
| 60 | 
            +
                "Section 366": 58,
         | 
| 61 | 
            +
                "Section 366A": 59,
         | 
| 62 | 
            +
                "Section 375": 60,
         | 
| 63 | 
            +
                "Section 376": 61,
         | 
| 64 | 
            +
                "Section 376(2)": 62,
         | 
| 65 | 
            +
                "Section 379": 63,
         | 
| 66 | 
            +
                "Section 380": 64,
         | 
| 67 | 
            +
                "Section 384": 65,
         | 
| 68 | 
            +
                "Section 389": 66,
         | 
| 69 | 
            +
                "Section 392": 67,
         | 
| 70 | 
            +
                "Section 394": 68,
         | 
| 71 | 
            +
                "Section 395": 69,
         | 
| 72 | 
            +
                "Section 397": 70,
         | 
| 73 | 
            +
                "Section 406": 71,
         | 
| 74 | 
            +
                "Section 409": 72,
         | 
| 75 | 
            +
                "Section 411": 73,
         | 
| 76 | 
            +
                "Section 415": 74,
         | 
| 77 | 
            +
                "Section 417": 75,
         | 
| 78 | 
            +
                "Section 419": 76,
         | 
| 79 | 
            +
                "Section 420": 77,
         | 
| 80 | 
            +
                "Section 427": 78,
         | 
| 81 | 
            +
                "Section 436": 79,
         | 
| 82 | 
            +
                "Section 437": 80,
         | 
| 83 | 
            +
                "Section 438": 81,
         | 
| 84 | 
            +
                "Section 447": 82,
         | 
| 85 | 
            +
                "Section 448": 83,
         | 
| 86 | 
            +
                "Section 450": 84,
         | 
| 87 | 
            +
                "Section 452": 85,
         | 
| 88 | 
            +
                "Section 457": 86,
         | 
| 89 | 
            +
                "Section 465": 87,
         | 
| 90 | 
            +
                "Section 467": 88,
         | 
| 91 | 
            +
                "Section 468": 89,
         | 
| 92 | 
            +
                "Section 471": 90,
         | 
| 93 | 
            +
                "Section 482": 91,
         | 
| 94 | 
            +
                "Section 494": 92,
         | 
| 95 | 
            +
                "Section 498": 93,
         | 
| 96 | 
            +
                "Section 498A": 94,
         | 
| 97 | 
            +
                "Section 500": 95,
         | 
| 98 | 
            +
                "Section 504": 96,
         | 
| 99 | 
            +
                "Section 506": 97,
         | 
| 100 | 
            +
                "Section 509": 98,
         | 
| 101 | 
            +
                "Section 511": 99
         | 
| 102 | 
            +
            }
         | 
    	
        ner_helpers.py
    ADDED
    
    | @@ -0,0 +1,141 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from transformers import AutoTokenizer
         | 
| 2 | 
            +
            import re
         | 
| 3 | 
            +
            import string
         | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            class TF_Tokenizer:
         | 
| 7 | 
            +
                def __init__(self, model_str):
         | 
| 8 | 
            +
                    tok = AutoTokenizer.from_pretrained(model_str)
         | 
| 9 | 
            +
             | 
| 10 | 
            +
                def __call__(self, txt):
         | 
| 11 | 
            +
                    return self.tok.tokenize(txt)
         | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
            class WS_Tokenizer:
         | 
| 15 | 
            +
                def __init__(self):
         | 
| 16 | 
            +
                    pass
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                def __call__(self, txt):
         | 
| 19 | 
            +
                    return re.findall(r"[{}]|\w+".format(string.punctuation), txt)
         | 
| 20 | 
            +
             | 
| 21 | 
            +
             | 
| 22 | 
            +
            def convert_spans_to_bio(txt, roles, tokenizer_func):
         | 
| 23 | 
            +
                roles = sorted(roles, key=lambda x: x["start"])
         | 
| 24 | 
            +
                roles_left = [r["start"] for r in roles]
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                ttxt = tokenizer_func(txt)
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                c = 0
         | 
| 29 | 
            +
                cr = -1
         | 
| 30 | 
            +
                prev = "O"
         | 
| 31 | 
            +
                troles = []
         | 
| 32 | 
            +
                for tok in ttxt:
         | 
| 33 | 
            +
                    if c >= len(txt):
         | 
| 34 | 
            +
                        break
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                    while txt[c] == " ":
         | 
| 37 | 
            +
                        c += 1
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                    else:
         | 
| 40 | 
            +
                        if c in roles_left:  # Start of a new role
         | 
| 41 | 
            +
                            ind = roles_left.index(c)
         | 
| 42 | 
            +
                            cr = roles[ind]["end"]
         | 
| 43 | 
            +
                            prev = "I-" + roles[ind]["label"]
         | 
| 44 | 
            +
                            troles.append("B-" + roles[ind]["label"])
         | 
| 45 | 
            +
                        else:
         | 
| 46 | 
            +
                            if c < cr:  # Assign previous role
         | 
| 47 | 
            +
                                troles.append(prev)
         | 
| 48 | 
            +
                            else:  # Assign 'O'
         | 
| 49 | 
            +
                                troles.append("O")
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                        c += len(tok)
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                if len(ttxt) != len(troles):
         | 
| 54 | 
            +
                    troles += ["O"] * (len(ttxt) - len(troles))
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                assert len(ttxt) == len(troles)
         | 
| 57 | 
            +
                return troles
         | 
| 58 | 
            +
             | 
| 59 | 
            +
             | 
| 60 | 
            +
            def convert_bio_to_spans(txt, troles, tokenizer_func):
         | 
| 61 | 
            +
                c = 0
         | 
| 62 | 
            +
                c2 = 0
         | 
| 63 | 
            +
                cr = -1
         | 
| 64 | 
            +
                cs = -1
         | 
| 65 | 
            +
                prev = "O"
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                roles = []
         | 
| 68 | 
            +
                ttxt = tokenizer_func(txt)
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                if len(ttxt) != len(troles):
         | 
| 71 | 
            +
                    ttxt = ttxt[: len(troles)]
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                for j, tok in enumerate(ttxt):
         | 
| 74 | 
            +
                    if c >= len(txt):
         | 
| 75 | 
            +
                        break
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                    while c < len(txt) and txt[c].isspace():
         | 
| 78 | 
            +
                        c += 1
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                    if tok[:2] == "##" or tok == "[UNK]":
         | 
| 81 | 
            +
                        c += len(tok) - 2 if tok[:2] == "##" else 1
         | 
| 82 | 
            +
                    else:
         | 
| 83 | 
            +
                        if troles[j].startswith("B-"):
         | 
| 84 | 
            +
                            if cs >= cr:
         | 
| 85 | 
            +
                                cr = c
         | 
| 86 | 
            +
                                if cs >= 0:
         | 
| 87 | 
            +
                                    roles.append({"start": cs, "end": c2, "label": prev})
         | 
| 88 | 
            +
                            cs = c
         | 
| 89 | 
            +
                            prev = troles[j][2:]
         | 
| 90 | 
            +
                        else:
         | 
| 91 | 
            +
                            if troles[j] == "O":
         | 
| 92 | 
            +
                                if cs >= cr:
         | 
| 93 | 
            +
                                    cr = c
         | 
| 94 | 
            +
                                    if cs >= 0:
         | 
| 95 | 
            +
                                        roles.append({"start": cs, "end": c2, "label": prev})
         | 
| 96 | 
            +
                        c += len(tok)
         | 
| 97 | 
            +
                    c2 = c
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                if cs >= cr:
         | 
| 100 | 
            +
                    if cs >= 0:
         | 
| 101 | 
            +
                        roles.append({"start": cs, "end": c2, "label": prev})
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                return roles
         | 
| 104 | 
            +
             | 
| 105 | 
            +
             | 
| 106 | 
            +
            def span2bio(txt, labels):
         | 
| 107 | 
            +
                roles = sorted(labels, key=lambda x: x["label"])
         | 
| 108 | 
            +
                roles_left = [r["start"] for r in roles]
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                ttxt = re.findall(r"[{}]|\w+".format(string.punctuation), txt)
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                c = 0
         | 
| 113 | 
            +
                cr = -1
         | 
| 114 | 
            +
                prev = "O"
         | 
| 115 | 
            +
                troles = []
         | 
| 116 | 
            +
                for tok in ttxt:
         | 
| 117 | 
            +
                    if c >= len(txt):
         | 
| 118 | 
            +
                        break
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                    while txt[c] == " ":
         | 
| 121 | 
            +
                        c += 1
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                    else:
         | 
| 124 | 
            +
                        if c in roles_left:  # Start of a new role
         | 
| 125 | 
            +
                            ind = roles_left.index(c)
         | 
| 126 | 
            +
                            cr = roles[ind]["end"]
         | 
| 127 | 
            +
                            prev = "I-" + roles[ind]["label"]
         | 
| 128 | 
            +
                            troles.append("B-" + roles[ind]["label"])
         | 
| 129 | 
            +
                        else:
         | 
| 130 | 
            +
                            if c < cr:  # Assign previous role
         | 
| 131 | 
            +
                                troles.append(prev)
         | 
| 132 | 
            +
                            else:  # Assign 'O'
         | 
| 133 | 
            +
                                troles.append("O")
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                        c += len(tok)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                if len(ttxt) != len(troles):
         | 
| 138 | 
            +
                    troles += ["O"] * (len(ttxt) - len(troles))
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                assert len(ttxt) == len(troles)
         | 
| 141 | 
            +
                return ttxt, troles
         | 
    	
        requirements.txt
    CHANGED
    
    | @@ -5,4 +5,5 @@ gradio | |
| 5 | 
             
            huggingface-hub==0.18.0
         | 
| 6 | 
             
            numpy==1.24.2
         | 
| 7 | 
             
            APScheduler==3.10.1
         | 
| 8 | 
            -
            pandas==1.3.4
         | 
|  | 
|  | |
| 5 | 
             
            huggingface-hub==0.18.0
         | 
| 6 | 
             
            numpy==1.24.2
         | 
| 7 | 
             
            APScheduler==3.10.1
         | 
| 8 | 
            +
            pandas==1.3.4
         | 
| 9 | 
            +
            nervaluate==0.2.0
         | 
    	
        submissions/baseline/IL_TUR_eval_gold_small.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        submissions/baseline/IL_TUR_eval_submission_small.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        uploads.py
    CHANGED
    
    | @@ -6,7 +6,11 @@ import json | |
| 6 | 
             
            import pandas as pd
         | 
| 7 | 
             
            import gradio as gr
         | 
| 8 |  | 
|  | |
|  | |
|  | |
| 9 | 
             
            LEADERBOARD_PATH = "Exploration-Lab/IL-TUR-Leaderboard"
         | 
|  | |
| 10 | 
             
            # RESULTS_PATH = "Exploration-Lab/IL-TUR-Leaderboard-results"
         | 
| 11 | 
             
            TOKEN = os.environ.get("TOKEN", None)
         | 
| 12 | 
             
            YEAR_VERSION = "2024"
         | 
| @@ -93,9 +97,21 @@ def add_new_eval( | |
| 93 | 
             
                # upload the df to spaces
         | 
| 94 | 
             
                import io
         | 
| 95 |  | 
| 96 | 
            -
                 | 
| 97 | 
            -
             | 
| 98 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 99 |  | 
| 100 | 
             
                with open("submissions/baseline/results.json", "r") as f:
         | 
| 101 | 
             
                    results = json.load(f)
         | 
|  | |
| 6 | 
             
            import pandas as pd
         | 
| 7 | 
             
            import gradio as gr
         | 
| 8 |  | 
| 9 | 
            +
            from eval_utils import get_evaluation_scores
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
             
            LEADERBOARD_PATH = "Exploration-Lab/IL-TUR-Leaderboard"
         | 
| 13 | 
            +
            SUBMISSION_FORMAT = "predictions"
         | 
| 14 | 
             
            # RESULTS_PATH = "Exploration-Lab/IL-TUR-Leaderboard-results"
         | 
| 15 | 
             
            TOKEN = os.environ.get("TOKEN", None)
         | 
| 16 | 
             
            YEAR_VERSION = "2024"
         | 
|  | |
| 97 | 
             
                # upload the df to spaces
         | 
| 98 | 
             
                import io
         | 
| 99 |  | 
| 100 | 
            +
                if SUBMISSION_FORMAT == "predictions":
         | 
| 101 | 
            +
                    # read the submission json file
         | 
| 102 | 
            +
                    with open(path_to_file, "r") as f:
         | 
| 103 | 
            +
                        submission_data = json.load(f)
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    # read the gold json file
         | 
| 106 | 
            +
                    with open("submissions/baseline/IL_TUR_eval_gold_small.json", "r") as f:
         | 
| 107 | 
            +
                        gold_data = json.load(f)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                    submission = get_evaluation_scores(gold_data, submission_data)
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                else:
         | 
| 112 | 
            +
                    # read the submission json file
         | 
| 113 | 
            +
                    with open(path_to_file, "r") as f:
         | 
| 114 | 
            +
                        submission = json.load(f)
         | 
| 115 |  | 
| 116 | 
             
                with open("submissions/baseline/results.json", "r") as f:
         | 
| 117 | 
             
                    results = json.load(f)
         | 
