File size: 6,544 Bytes
df66f6e
 
2a5f9fb
 
df66f6e
314f91a
2a5f9fb
 
df66f6e
 
 
2a5f9fb
 
976f398
 
2a5f9fb
3948397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5f9fb
 
3948397
 
 
 
 
 
2a5f9fb
3948397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5f9fb
3948397
 
 
 
 
2a5f9fb
 
3948397
 
2a5f9fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import json
import os
from datetime import datetime, timezone

from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
    already_submitted_models,
    check_model_card,
    get_model_size,
    is_model_on_hub,
)

REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None

OUT_DIR = f"{EVAL_REQUESTS_PATH}"
RESULTS_PATH = f"{OUT_DIR}/evaluation.json"

# def add_new_eval(
#     model: str,
#     base_model: str,
#     revision: str,
#     precision: str,
#     weight_type: str,
#     model_type: str,
# ):
#     global REQUESTED_MODELS
#     global USERS_TO_SUBMISSION_DATES
#     if not REQUESTED_MODELS:
#         REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)

#     user_name = ""
#     model_path = model
#     if "/" in model:
#         user_name = model.split("/")[0]
#         model_path = model.split("/")[1]

#     precision = precision.split(" ")[0]
#     current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

#     if model_type is None or model_type == "":
#         return styled_error("Please select a model type.")

#     # Does the model actually exist?
#     if revision == "":
#         revision = "main"

#     # Is the model on the hub?
#     if weight_type in ["Delta", "Adapter"]:
#         base_model_on_hub, error, _ = is_model_on_hub(
#             model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True
#         )
#         if not base_model_on_hub:
#             return styled_error(f'Base model "{base_model}" {error}')

#     if not weight_type == "Adapter":
#         model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
#         if not model_on_hub:
#             return styled_error(f'Model "{model}" {error}')

#     # Is the model info correctly filled?
#     try:
#         model_info = API.model_info(repo_id=model, revision=revision)
#     except Exception:
#         return styled_error("Could not get your model information. Please fill it up properly.")

#     model_size = get_model_size(model_info=model_info, precision=precision)

#     # Were the model card and license filled?
#     try:
#         license = model_info.cardData["license"]
#     except Exception:
#         return styled_error("Please select a license for your model")

#     modelcard_OK, error_msg = check_model_card(model)
#     if not modelcard_OK:
#         return styled_error(error_msg)

#     # Seems good, creating the eval
#     print("Adding new eval")

#     eval_entry = {
#         "model": model,
#         "base_model": base_model,
#         "revision": revision,
#         "precision": precision,
#         "weight_type": weight_type,
#         "status": "PENDING",
#         "submitted_time": current_time,
#         "model_type": model_type,
#         "likes": model_info.likes,
#         "params": model_size,
#         "license": license,
#         "private": False,
#     }

#     # Check for duplicate submission
#     if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
#         return styled_warning("This model has been already submitted.")

#     print("Creating eval file")
#     OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
#     os.makedirs(OUT_DIR, exist_ok=True)
#     out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"

#     with open(out_path, "w") as f:
#         f.write(json.dumps(eval_entry))

#     print("Uploading eval file")
#     API.upload_file(
#         path_or_fileobj=out_path,
#         path_in_repo=out_path.split("eval-queue/")[1],
#         repo_id=QUEUE_REPO,
#         repo_type="dataset",
#         commit_message=f"Add {model} to eval queue",
#     )

#     # Remove the local file
#     os.remove(out_path)

#     return styled_message(
#         "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
#     )


def format_error(msg):
    return f"<p style='color: red; font-size: 20px; text-align: center;'>{msg}</p>"


def format_warning(msg):
    return f"<p style='color: orange; font-size: 20px; text-align: center;'>{msg}</p>"


def format_log(msg):
    return f"<p style='color: green; font-size: 20px; text-align: center;'>{msg}</p>"


def model_hyperlink(link, model_name):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


def input_verification(model, model_family, forget_rate, url, path_to_file, organisation, mail):
    for input in [model, model_family, forget_rate, url, organisation]:
        if input == "":
            return format_warning("Please fill all the fields.")

    # Very basic email parsing
    _, parsed_mail = parseaddr(mail)
    if not "@" in parsed_mail:
        return format_warning("Please provide a valid email adress.")

    if path_to_file is None:
        return format_warning("Please attach a file.")

    return parsed_mail


def add_new_eval(
    model: str,
    model_family: str,
    forget_rate: str,
    url: str,
    path_to_file: str,
    organisation: str,
    mail: str,
):

    parsed_mail = input_verification(model, model_family, forget_rate, url, path_to_file, organisation, mail)

    # load the file
    df = pd.read_csv(path_to_file)

    # modify the df to include metadata
    df["model"] = model
    df["model_family"] = model_family
    df["forget_rate"] = forget_rate
    df["url"] = url
    df["organisation"] = organisation
    df["mail"] = parsed_mail
    df["timestamp"] = datetime.datetime.now()

    # upload to spaces using the hf api at

    path_in_repo = f"versions/{model_family}-{forget_rate.replace('%', 'p')}"
    file_name = f"{model}-{organisation}-{datetime.datetime.now().strftime('%Y-%m-%d')}.csv"

    # upload the df to spaces
    import io

    buffer = io.BytesIO()
    df.to_csv(buffer, index=False)  # Write the DataFrame to a buffer in CSV format
    buffer.seek(0)  # Rewind the buffer to the beginning

    API.upload_file(
        repo_id=RESULTS_PATH,
        path_in_repo=f"{path_in_repo}/{file_name}",
        path_or_fileobj=buffer,
        token=TOKEN,
        repo_type="space",
    )

    return format_log(
        f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait a bit to see the score displayed"
    )