Spaces:
Restarting
Restarting
File size: 6,544 Bytes
df66f6e 2a5f9fb df66f6e 314f91a 2a5f9fb df66f6e 2a5f9fb 976f398 2a5f9fb 3948397 2a5f9fb 3948397 2a5f9fb 3948397 2a5f9fb 3948397 2a5f9fb 3948397 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import json
import os
from datetime import datetime, timezone
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
OUT_DIR = f"{EVAL_REQUESTS_PATH}"
RESULTS_PATH = f"{OUT_DIR}/evaluation.json"
# def add_new_eval(
# model: str,
# base_model: str,
# revision: str,
# precision: str,
# weight_type: str,
# model_type: str,
# ):
# global REQUESTED_MODELS
# global USERS_TO_SUBMISSION_DATES
# if not REQUESTED_MODELS:
# REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
# user_name = ""
# model_path = model
# if "/" in model:
# user_name = model.split("/")[0]
# model_path = model.split("/")[1]
# precision = precision.split(" ")[0]
# current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
# if model_type is None or model_type == "":
# return styled_error("Please select a model type.")
# # Does the model actually exist?
# if revision == "":
# revision = "main"
# # Is the model on the hub?
# if weight_type in ["Delta", "Adapter"]:
# base_model_on_hub, error, _ = is_model_on_hub(
# model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True
# )
# if not base_model_on_hub:
# return styled_error(f'Base model "{base_model}" {error}')
# if not weight_type == "Adapter":
# model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
# if not model_on_hub:
# return styled_error(f'Model "{model}" {error}')
# # Is the model info correctly filled?
# try:
# model_info = API.model_info(repo_id=model, revision=revision)
# except Exception:
# return styled_error("Could not get your model information. Please fill it up properly.")
# model_size = get_model_size(model_info=model_info, precision=precision)
# # Were the model card and license filled?
# try:
# license = model_info.cardData["license"]
# except Exception:
# return styled_error("Please select a license for your model")
# modelcard_OK, error_msg = check_model_card(model)
# if not modelcard_OK:
# return styled_error(error_msg)
# # Seems good, creating the eval
# print("Adding new eval")
# eval_entry = {
# "model": model,
# "base_model": base_model,
# "revision": revision,
# "precision": precision,
# "weight_type": weight_type,
# "status": "PENDING",
# "submitted_time": current_time,
# "model_type": model_type,
# "likes": model_info.likes,
# "params": model_size,
# "license": license,
# "private": False,
# }
# # Check for duplicate submission
# if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
# return styled_warning("This model has been already submitted.")
# print("Creating eval file")
# OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
# os.makedirs(OUT_DIR, exist_ok=True)
# out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
# with open(out_path, "w") as f:
# f.write(json.dumps(eval_entry))
# print("Uploading eval file")
# API.upload_file(
# path_or_fileobj=out_path,
# path_in_repo=out_path.split("eval-queue/")[1],
# repo_id=QUEUE_REPO,
# repo_type="dataset",
# commit_message=f"Add {model} to eval queue",
# )
# # Remove the local file
# os.remove(out_path)
# return styled_message(
# "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
# )
def format_error(msg):
return f"<p style='color: red; font-size: 20px; text-align: center;'>{msg}</p>"
def format_warning(msg):
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{msg}</p>"
def format_log(msg):
return f"<p style='color: green; font-size: 20px; text-align: center;'>{msg}</p>"
def model_hyperlink(link, model_name):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def input_verification(model, model_family, forget_rate, url, path_to_file, organisation, mail):
for input in [model, model_family, forget_rate, url, organisation]:
if input == "":
return format_warning("Please fill all the fields.")
# Very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
return format_warning("Please provide a valid email adress.")
if path_to_file is None:
return format_warning("Please attach a file.")
return parsed_mail
def add_new_eval(
model: str,
model_family: str,
forget_rate: str,
url: str,
path_to_file: str,
organisation: str,
mail: str,
):
parsed_mail = input_verification(model, model_family, forget_rate, url, path_to_file, organisation, mail)
# load the file
df = pd.read_csv(path_to_file)
# modify the df to include metadata
df["model"] = model
df["model_family"] = model_family
df["forget_rate"] = forget_rate
df["url"] = url
df["organisation"] = organisation
df["mail"] = parsed_mail
df["timestamp"] = datetime.datetime.now()
# upload to spaces using the hf api at
path_in_repo = f"versions/{model_family}-{forget_rate.replace('%', 'p')}"
file_name = f"{model}-{organisation}-{datetime.datetime.now().strftime('%Y-%m-%d')}.csv"
# upload the df to spaces
import io
buffer = io.BytesIO()
df.to_csv(buffer, index=False) # Write the DataFrame to a buffer in CSV format
buffer.seek(0) # Rewind the buffer to the beginning
API.upload_file(
repo_id=RESULTS_PATH,
path_in_repo=f"{path_in_repo}/{file_name}",
path_or_fileobj=buffer,
token=TOKEN,
repo_type="space",
)
return format_log(
f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait a bit to see the score displayed"
)
|