import re import os import string import contractions import torch import datasets from datasets import Dataset import pandas as pd from tqdm import tqdm import evaluate from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig from transformers import Seq2SeqTrainingArguments, Seq2SeqTrainer from transformers import DataCollatorForSeq2Seq def clean_text(texts): '''This fonction makes clean text for the future use''' texts = texts.lower() texts = contractions.fix(texts) texts = texts.translate(str.maketrans("", "", string.punctuation)) texts = re.sub(r'\n', ' ', texts) return texts def datasetmaker(path=str): '''This fonction take the jsonl file, read it to a dataframe, remove the colums not needed for the task and turn it into a file type Dataset ''' data = pd.read_json(path, lines=True) df = data.drop(['url', 'archive', 'title', 'date', 'compression', 'coverage', 'density', 'compression_bin', 'coverage_bin', 'density_bin'], axis=1) tqdm.pandas() df['text'] = df.text.apply(lambda texts: clean_text(texts)) df['summary'] = df.summary.apply(lambda summary: clean_text(summary)) dataset = Dataset.from_dict(df) return dataset # voir si le model par hasard esr déjà bien # test_text = dataset['text'][0] # pipe = pipeline('summarization', model = model_ckpt) # pipe_out = pipe(test_text) # print(pipe_out[0]['summary_text'].replace('.', '.\n')) # print(dataset['summary'][0]) def generate_batch_sized_chunks(list_elements, batch_size): """split the dataset into smaller batches that we can process simultaneously Yield successive batch-sized chunks from list_of_elements.""" for i in range(0, len(list_elements), batch_size): yield list_elements[i: i + batch_size] def calculate_metric(dataset, metric, model, tokenizer, batch_size, device, column_text='text', column_summary='summary'): article_batches = list( str(generate_batch_sized_chunks(dataset[column_text], batch_size))) target_batches = list( str(generate_batch_sized_chunks(dataset[column_summary], batch_size))) for article_batch, target_batch in tqdm( zip(article_batches, target_batches), total=len(article_batches)): inputs = tokenizer(article_batch, max_length=1024, truncation=True, padding="max_length", return_tensors="pt") # parameter for length penalty ensures that the model does not # generate sequences that are too long. summaries = model.generate( input_ids=inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), length_penalty=0.8, num_beams=8, max_length=128) # Décode les textes # renplacer les tokens, ajouter des textes décodés avec les rédéfences # vers la métrique. decoded_summaries = [ tokenizer.decode( s, skip_special_tokens=True, clean_up_tokenization_spaces=True) for s in summaries] decoded_summaries = [d.replace("", " ") for d in decoded_summaries] metric.add_batch( predictions=decoded_summaries, references=target_batch) # compute et return les ROUGE scores. results = metric.compute() rouge_names = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] rouge_dict = dict((rn, results[rn]) for rn in rouge_names) return pd.DataFrame(rouge_dict, index=['T5']) def convert_ex_to_features(example_batch): input_encodings = tokenizer(example_batch['text'], max_length=1024, truncation=True) labels = tokenizer( example_batch['summary'], max_length=128, truncation=True) return { 'input_ids': input_encodings['input_ids'], 'attention_mask': input_encodings['attention_mask'], 'labels': labels['input_ids'] } if __name__ == '__main__': train_dataset = datasetmaker('data/train_extract.jsonl') dev_dataset = datasetmaker('data/dev_extract.jsonl') test_dataset = datasetmaker('data/test_extract.jsonl') dataset = datasets.DatasetDict({'train': train_dataset, 'dev': dev_dataset, 'test': test_dataset}) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = AutoTokenizer.from_pretrained('google/mt5-small') mt5_config = AutoConfig.from_pretrained( 'google/mt5-small', max_length=128, length_penalty=0.6, no_repeat_ngram_size=2, num_beams=15, ) model = (AutoModelForSeq2SeqLM .from_pretrained('google/mt5-small', config=mt5_config) .to(device)) dataset_pt = dataset.map( convert_ex_to_features, remove_columns=[ "summary", "text"], batched=True, batch_size=128) data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, return_tensors="pt") training_args = Seq2SeqTrainingArguments( output_dir="t5_summary", log_level="error", num_train_epochs=10, learning_rate=5e-4, warmup_steps=0, optim="adafactor", weight_decay=0.01, per_device_train_batch_size=2, per_device_eval_batch_size=1, gradient_accumulation_steps=16, evaluation_strategy="steps", eval_steps=100, predict_with_generate=True, generation_max_length=128, save_steps=500, logging_steps=10, # push_to_hub = True ) trainer = Seq2SeqTrainer( model=model, args=training_args, data_collator=data_collator, # compute_metrics = calculate_metric, train_dataset=dataset_pt['train'], eval_dataset=dataset_pt['dev'].select(range(10)), tokenizer=tokenizer, ) trainer.train() rouge_metric = evaluate.load("rouge") score = calculate_metric( test_dataset, rouge_metric, trainer.model, tokenizer, batch_size=2, device=device, column_text='text', column_summary='summary') print(score) # Fine Tuning terminés et à sauvgarder # save fine-tuned model in local os.makedirs("t5_summary", exist_ok=True) if hasattr(trainer.model, "module"): trainer.model.module.save_pretrained("t5_summary") else: trainer.model.save_pretrained("t5_summary") tokenizer.save_pretrained("t5_summary") # load local model model = (AutoModelForSeq2SeqLM .from_pretrained("t5_summary") .to(device)) # mettre en usage : TEST # gen_kwargs = {"length_penalty" : 0.8, "num_beams" : 8, "max_length" : 128} # sample_text = dataset["test"][0]["text"] # reference = dataset["test"][0]["summary"] # pipe = pipeline("summarization", model='./summarization_t5') # print("Text :") # print(sample_text) # print("\nReference Summary :") # print(reference) # print("\nModel Summary :") # print(pipe(sample_text, **gen_kwargs)[0]["summary_text"])