Spaces:
Runtime error
Runtime error
inference fonctionnelle sans load de fichier
Browse files- .gitattributes +1 -0
- src/inference.py +7 -13
.gitattributes
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 1 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
src/inference.py
CHANGED
|
@@ -5,19 +5,12 @@ import pickle
|
|
| 5 |
|
| 6 |
import torch
|
| 7 |
|
| 8 |
-
import dataloader
|
| 9 |
-
from model import Decoder, Encoder, EncoderDecoderModel
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
data2 = dataloader.Data("data/dev_extract.jsonl")
|
| 15 |
-
words = pickle.load("model/vocab.pkl")
|
| 16 |
-
words = data1.get_words()
|
| 17 |
-
|
| 18 |
-
vectoriser = dataloader.Vectoriser()
|
| 19 |
-
vectoriser.load("model/vocab.pkl")
|
| 20 |
-
word_counts = vectoriser.word_count
|
| 21 |
|
| 22 |
|
| 23 |
def inferenceAPI(text: str) -> str:
|
|
@@ -42,7 +35,7 @@ def inferenceAPI(text: str) -> str:
|
|
| 42 |
)
|
| 43 |
|
| 44 |
# On instancie le modèle
|
| 45 |
-
model = EncoderDecoderModel(encoder, decoder, device)
|
| 46 |
|
| 47 |
model.load_state_dict(torch.load("model/model.pt", map_location=device))
|
| 48 |
model.eval()
|
|
@@ -56,6 +49,7 @@ def inferenceAPI(text: str) -> str:
|
|
| 56 |
with torch.no_grad():
|
| 57 |
output = model(source).to(device)
|
| 58 |
output.to(device)
|
|
|
|
| 59 |
return vectoriser.decode(output)
|
| 60 |
|
| 61 |
|
|
|
|
| 5 |
|
| 6 |
import torch
|
| 7 |
|
| 8 |
+
from src import dataloader
|
| 9 |
+
from src.model import Decoder, Encoder, EncoderDecoderModel
|
| 10 |
|
| 11 |
+
with open ("model/vocab.pkl", 'rb') as vocab:
|
| 12 |
+
words = pickle.load(vocab)
|
| 13 |
+
vectoriser = dataloader.Vectoriser(words)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
def inferenceAPI(text: str) -> str:
|
|
|
|
| 35 |
)
|
| 36 |
|
| 37 |
# On instancie le modèle
|
| 38 |
+
model = EncoderDecoderModel(encoder, decoder, vectoriser, device)
|
| 39 |
|
| 40 |
model.load_state_dict(torch.load("model/model.pt", map_location=device))
|
| 41 |
model.eval()
|
|
|
|
| 49 |
with torch.no_grad():
|
| 50 |
output = model(source).to(device)
|
| 51 |
output.to(device)
|
| 52 |
+
output=output.argmax(dim=-1)
|
| 53 |
return vectoriser.decode(output)
|
| 54 |
|
| 55 |
|