Spaces:
Runtime error
Runtime error
File size: 1,785 Bytes
41508f8 5925e5f 41508f8 5925e5f 41508f8 5925e5f 1aab2b0 41508f8 4874293 41508f8 5925e5f 41508f8 1aab2b0 41508f8 1aab2b0 5925e5f 4874293 41508f8 5925e5f 41508f8 5925e5f 4874293 1aab2b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
"""
Allows to predict the summary for a given entry text
"""
import torch
import re
import string
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
def clean_text(texts: str) -> str:
texts = texts.lower()
texts = texts.translate(str.maketrans("", "", string.punctuation))
texts = re.sub(r'\n', ' ', texts)
return texts
def inferenceAPI_T5(text: str) -> str:
"""
Predict the summary for an input text
--------
Parameter
text: str
the text to sumarize
Return
str
The summary for the input text
"""
# On défini les paramètres d'entrée pour le modèle
text = clean_text(text)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = (AutoTokenizer.from_pretrained("Linggg/t5_summary",use_auth_token=True))
# load local model
model = (AutoModelForSeq2SeqLM
.from_pretrained("Linggg/t5_summary",use_auth_token=True)
.to(device))
text_encoding = tokenizer(
text,
max_length=1024,
padding='max_length',
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors='pt'
)
generated_ids = model.generate(
input_ids=text_encoding['input_ids'],
attention_mask=text_encoding['attention_mask'],
max_length=128,
num_beams=8,
length_penalty=0.8,
early_stopping=True
)
preds = [
tokenizer.decode(gen_id, skip_special_tokens=True, clean_up_tokenization_spaces=True)
for gen_id in generated_ids
]
return "".join(preds)
# if __name__ == "__main__":
# text = input('Entrez votre phrase à résumer : ')
# print('summary:', inferenceAPI_T5(text))
|