File size: 40,488 Bytes
d5c53f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
import numpy as np
import sys,os
# sys.path.append("/home/yifan/sam2")
# sys.path.append("/data_sdf/yifan/miniconda3/envs/sam2/lib/python3.10/site-packages")
from huggingface_hub import hf_hub_download
sys.path.append(os.path.join(os.path.dirname(__file__), "sam2"))
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
import torch
import matplotlib.pyplot as plt
from PIL import Image
import cv2
import random
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
device = torch.device("cuda")
sam2_checkpoint = hf_hub_download(
    repo_id="Evan73/sam2-models",
    filename="sam2.1_hiera_large.pt"
)
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
# global sam2_model
predictor = SAM2ImagePredictor(sam2_model)
from ultralytics import YOLO
from diffusers.utils import load_image
import pickle
import os
import math
heatmap_zip = hf_hub_download(
    repo_id="Evan73/attention-heatmaps",
    filename="attention_heatmaps.zip"
)
import zipfile
import os

with zipfile.ZipFile(heatmap_zip, 'r') as zip_ref:
    zip_ref.extractall("heatmaps_lda")

with open("heatmaps_lda/attention_heatmaps.pkl", "rb") as f:
    heatmap_dict = pickle.load(f)

def load_yolov5_model():
    # 使用YOLOv5官方模型加载器(需要安装yolov5)
    # model = torch.hub.load('ultralytics/yolov11', 'yolov11s')  # 可以根据需要选择不同大小的模型
    model = YOLO("yolo11n.pt")
    class_names = model.names  # class index to name mapping
    print("YOLOv11 Class Names:")
    for idx, name in class_names.items():
        print(f"{idx}: {name}")
    return model

# 检查点是否在汽车区域内
def is_point_in_car_area(point, model, image):
    """
    检查给定的点是否在车辆区域内
    - point: 点的坐标 (x, y)
    - model: YOLO模型
    - image: 输入的图像
    """
    # 使用YOLO模型进行物体检测
    results = model(image)  # 获取检测结果
    
    # 获取汽车类别(根据模型调整类别ID)
    # print("Detected classes:", results[0].boxes.cls.cpu().numpy())
    car_class_id = [2, 5, 7]  # COCO数据集中汽车类别通常为2,但需确认
    image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    
    # 遍历每个检测结果(支持批量处理,这里假设单张图像)
    for result in results:
        # 提取检测框的xyxy坐标、置信度、类别
        boxes = result.boxes.xyxy.cpu().numpy()  # 转换为左上和右下坐标
        confidences = result.boxes.conf.cpu().numpy()
        class_ids = result.boxes.cls.cpu().numpy().astype(int)
        
        # 遍历每个检测框
        for box, cls in zip(boxes, class_ids):
            if cls in car_class_id:
                x_min, y_min, x_max, y_max = box[:4]
                # 绘制检测框(可选)
                cv2.rectangle(image_bgr, (int(x_min), int(y_min)), (int(x_max), int(y_max)), (0, 255, 0), 2)
                # 检查点是否在框内
                if (x_min <= point[0] <= x_max) and (y_min <= point[1] <= y_max):
                    cv2.imwrite("yolo_res.jpg", image_bgr)
                    return False
    cv2.imwrite("yolo_res.jpg", image_bgr)
    print(f"检测结果已保存至 yolo_res.jpg")
    return True


def show_mask(mask, ax, image_path,random_color=False, borders=True, image=None, save_path=None):
    """
    根据mask区域随机选择两个对角点并在原始图像上绘制矩形框。
    
    参数:
    - `mask`: 掩码区域
    - `ax`: 用于绘制的matplotlib轴
    - `random_color`: 是否使用随机颜色
    - `borders`: 是否显示边界
    - `image`: 原始图像,用于绘制矩形框
    - `save_path`: 保存结果图像的路径
    """
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])

    h, w = mask.shape[-2:]
    mask = mask.astype(np.uint8)
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    cv2.imwrite("binary_mask.png", (mask * 255).astype(np.uint8))
    print("原始二值掩码已保存为 binary_mask.png")
    if borders:
        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
        mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=5)
    # print(f"Mask unique values: {np.unique(mask)}")
    # print(f"Max value in mask: {mask.max()}, Min value in mask: {mask.min()}")
    # 如果提供了原始图像,绘制矩形框
    # size = 100
    colors = [
        (255, 0, 0),   # 红色
        (0, 255, 0),   # 绿色
        (0, 0, 255),   # 蓝色
        (255, 255, 0), # 黄色
        (255, 0, 255), # 品红色
        (0, 255, 255), # 青色
        (255, 128, 0), # 橙色
        (128, 0, 255), # 紫色
        (128, 128, 128), # 灰色
        (0, 128, 0)    # 深绿色
    ]

    for idx, contour in enumerate(contours):
        x, y, w, h = cv2.boundingRect(contour)
        print(f"轮廓{idx}: x={x}, y={y}, w={w}, h={h}")
        color = colors[idx % len(colors)]
        cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
    middle_save_path = "contours_colored_result.png"
    cv2.imwrite(middle_save_path, image)
    print(f"带颜色的轮廓结果已保存至 {middle_save_path}")
    if image is not None:
        # 找到掩码的边界
        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        for contour in contours:
            x, y, w, h = cv2.boundingRect(contour)
            # print(x, y, w, h)
            if w > 50 and h > 50:
                for size in range(90,40,-5):
                    for _ in range(100):
                        random_x1 = random.randint(x, x + w - 50)
                        random_y1 = random.randint(y, y + h - 50)
                        random_x2 = random_x1 - size
                        random_y2 = random_y1 - size
                        # print(random_x1, random_y1,random_x2,random_y2)
                        # 在原图上绘制矩形框
                        # 保存结果图像
                        try:
                            if save_path and mask[random_y1, random_x1] == 1 and mask[random_y2, random_x2] == 1:
                                cv2.rectangle(image,(random_x2, random_y2), (random_x1, random_y1), (0, 255, 0), 2)
                                cv2.imwrite(save_path, image)
                                # generate_gt_mask_from_intersection([(random_x1, random_y1),(random_x2, random_y2)], yolo_boxes, image, sam2_model, threshold_iou=0.01)
                                print(f"Image with rectangle saved at {save_path}")
                                return (random_x1,random_y1),(random_x2,random_y2)
                        except:
                            pass
                            # cv2.rectangle(image,(random_x2, random_y2), (random_x1, random_y1), (0, 255, 0), 2)
                            # cv2.imwrite(save_path, image)
                            # print(f"Image with rectangle saved at {save_path}")
                            # break
                    for _ in range(100):
                        random_x1 = random.randint(x, x + w - 50)
                        random_y1 = random.randint(y, y + h - 50)
                        random_x2 = random_x1 + size
                        random_y2 = random_y1 + size
                        # print(mask[random_y1, random_x1] == 1,mask[random_y2, random_x2] == 1)
                        # 在原图上绘制矩形框
                        # 保存结果图像
                        try:
                            if save_path and mask[random_y1, random_x1] == 1 and mask[random_y2, random_x2] == 1:
                                cv2.rectangle(image,(random_x2, random_y2), (random_x1, random_y1), (0, 255, 0), 2)
                                cv2.imwrite(save_path, image)
                                print(f"Image with rectangle saved at {save_path}")
                                # generate_gt_mask_from_intersection([(random_x1, random_y1),(random_x2, random_y2)], yolo_boxes, image, sam2_model, threshold_iou=0.01)
                                return (random_x1,random_y1),(random_x2,random_y2)
                        except:
                            pass

    ax.imshow(mask_image)
    plt.axis('off')
    
    

def attention_mask(mask, ax, image_path,strategy="LOA",random_color=False, borders=True, image=None, save_path=None):
    """
    根据mask区域随机选择两个对角点并在原始图像上绘制矩形框。
    
    参数:
    - `mask`: 掩码区域
    - `ax`: 用于绘制的matplotlib轴
    - `random_color`: 是否使用随机颜色
    - `borders`: 是否显示边界
    - `image`: 原始图像,用于绘制矩形框
    - `save_path`: 保存结果图像的路径
    """
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    orig_w, orig_h = image.shape[1],image.shape[0]
    # print(image.shape)
    h, w = mask.shape[-2:]
    mask = mask.astype(np.uint8)
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    cv2.imwrite("binary_mask.png", (mask * 255).astype(np.uint8))
    print("原始二值掩码已保存为 binary_mask.png")
    # if borders:
    #     contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    #     contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
    #     mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
    # colors = [
    #     (255, 0, 0),   # 红色
    #     (0, 255, 0),   # 绿色
    #     (0, 0, 255),   # 蓝色
    #     (255, 255, 0), # 黄色
    #     (255, 0, 255), # 品红色
    #     (0, 255, 255), # 青色
    #     (255, 128, 0), # 橙色
    #     (128, 0, 255), # 紫色
    #     (128, 128, 128), # 灰色
    #     (0, 128, 0)    # 深绿色
    # ]
    # # print(mask.shape)
    # for idx, contour in enumerate(contours):
    #     x, y, w, h = cv2.boundingRect(contour)
    #     print(f"轮廓{idx}: x={x}, y={y}, w={w}, h={h}")
    #     color = colors[idx % len(colors)]
    #     cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
    # middle_save_path = "contours_colored_result.png"
    # cv2.imwrite(middle_save_path, image)
    # print(f"带颜色的轮廓结果已保存至 {middle_save_path}")
    candidates = []
    path = image_path
    cls_heatmap = heatmap_dict[path]['cls_heatmap']
    reg_heatmap = heatmap_dict[path]['reg_heatmap']
    font = cv2.FONT_HERSHEY_SIMPLEX
    if strategy == "LDA":
       combined = cls_heatmap.astype(np.float32)
    if strategy == "LOA" or strategy == "LRA":
       combined = reg_heatmap.astype(np.float32)
    print(mask.shape)
    mask = cv2.resize(mask, (combined.shape[1], combined.shape[0]), interpolation=cv2.INTER_NEAREST)
    mask = (mask > 0.5).astype(np.uint8)
    cv2.imwrite("crop_binary_mask.png", (mask * 255).astype(np.uint8))
    print("处理后的裁剪二值掩码已保存为 crop_binary_mask.png")
    print(combined.shape)
    vis_image = cv2.imread(image_path)
    vis_image = cv2.resize(vis_image,(combined.shape[1],combined.shape[0]))
    mask_image =  cv2.resize(mask_image,(combined.shape[1],combined.shape[0]))
    image =  cv2.resize(image,(combined.shape[1],combined.shape[0]))
    if borders:
        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
        mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
    colors = [
        (255, 0, 0),   # 红色
        (0, 255, 0),   # 绿色
        (0, 0, 255),   # 蓝色
        (255, 255, 0), # 黄色
        (255, 0, 255), # 品红色
        (0, 255, 255), # 青色
        (255, 128, 0), # 橙色
        (128, 0, 255), # 紫色
        (128, 128, 128), # 灰色
        (0, 128, 0)    # 深绿色
    ]
    # print(mask.shape)
    for idx, contour in enumerate(contours):
        x, y, w, h = cv2.boundingRect(contour)
        print(f"轮廓{idx}: x={x}, y={y}, w={w}, h={h}")
        color = colors[idx % len(colors)]
        cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
    middle_save_path = "contours_colored_result.png"
    cv2.imwrite(middle_save_path, image)
    print(f"带颜色的轮廓结果已保存至 {middle_save_path}")
    if image is not None:
        # 找到掩码的边界
        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        # print(contours)
        for contour in contours:
            x, y, w, h = cv2.boundingRect(contour)
            print("the contour is:",x, y, w, h)
            if w > 50 and h > 50:
                for size in range(50,40,-5):
                    for y_step in range(y, y+h - size,5):
                        for x_step in range(x, x+w - size,5):
                            x1, y1, x2, y2 = x_step, y_step, x_step + size, y_step + size
                            # print(mask[y1:y2, x1:x2].sum())
                            if mask[y1:y2, x1:x2].sum() >= size * size:  # 掩码区域必须都在内部
                                heat_value = combined[y1:y2, x1:x2].mean()
                                # print("the heat_value is:",heat_value,y1,y2, x1,x2,combined.shape)
                                if not math.isnan(heat_value):
                                    candidates.append(((x1, y1, x2, y2), heat_value))
                                    cv2.rectangle(vis_image, (x1, y1), (x2, y2), (0, 255, 0), 1)
                                    cv2.putText(vis_image, f'{heat_value:.1f}', (x1, y1 - 2), font, 0.4, (0, 0, 255), 1)
                    if not candidates:
                        print("⚠️ 没有找到满足掩码内区域的候选框")
                    else:
                        break
                cv2.imwrite("attention_vis.jpg", vis_image)
                print(f"Attention 候选框可视化已保存 attention_vis.jpg")
                # 从高到低排序,选择热值最高的
                candidates.sort(key=lambda x: x[1], reverse=True)
                print(save_path,candidates[0],candidates[-1])
                for (x1, y1, x2, y2), _ in candidates:
                    try:
                        if mask[y1, x1] == 1 and mask[y2, x2] == 1:
                            # 可视化 + 保存
                            if save_path:
                                image = cv2.imread(image_path)
                                image = cv2.resize(image,(combined.shape[1],combined.shape[0]))
                                cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
                                # os.makedirs(os.path.dirname(save_path), exist_ok=True)
                                cv2.imwrite(save_path, image)
                                print(f"Image with rectangle saved at {save_path}")
                            resize_w, resize_h = combined.shape[1],combined.shape[0]
                            scale_x = orig_w / resize_w
                            scale_y = orig_h / resize_h
                            x1_orig = int(x1 * scale_x)
                            x2_orig = int(x2 * scale_x)
                            y1_orig = int(y1 * scale_y)
                            y2_orig = int(y2 * scale_y)
                            cx = (x1_orig + x2_orig) // 2
                            cy = (y1_orig + y2_orig) // 2
                            target_size = 90
                            half = target_size // 2
                            x1_exp = max(0, cx - half)
                            y1_exp = max(0, cy - half)
                            x2_exp = min(orig_w - 1, cx + half)
                            y2_exp = min(orig_h - 1, cy + half)
                            print(f"扩展后的原图坐标: ({x1_exp}, {y1_exp}), ({x2_exp}, {y2_exp})")
                            image_full = cv2.imread(image_path)  # 原图大小读取
                            cv2.rectangle(image_full, (x1_exp, y1_exp), (x2_exp, y2_exp), (0, 0, 255), 2)
                            cv2.imwrite("expanded_bbox_on_original.jpg", image_full)
                            print("📌 扩大后的候选框已绘制到原图并保存为 expanded_bbox_on_original.jpg")
                            return (x1_exp, y1_exp), (x2_exp, y2_exp)
                    except Exception as e:
                        print("the error is:",e)
                        pass  # 若越界等问题,继续下一个
                    # for _ in range(100):
                    #     random_x1 = random.randint(x, x + w - 50)
                    #     random_y1 = random.randint(y, y + h - 50)
                    #     random_x2 = random_x1 + size
                    #     random_y2 = random_y1 + size
                    #     # print(mask[random_y1, random_x1] == 1,mask[random_y2, random_x2] == 1)
                    #     try:
                    #         if save_path and mask[random_y1, random_x1] == 1 and mask[random_y2, random_x2] == 1:
                    #             cv2.rectangle(image,(random_x2, random_y2), (random_x1, random_y1), (0, 255, 0), 2)
                    #             cv2.imwrite(save_path, image)
                    #             print(f"Image with rectangle saved at {save_path}")  
                    #             return (random_x1,random_y1),(random_x2,random_y2)
                    #     except:
                    #         pass

    ax.imshow(mask_image)
    plt.axis('off')

def generate_gt_mask_from_intersection(random_rectangle, yolo_boxes, image, mask_img,sam2_model, threshold_iou):
    """
    判断随机生成的矩形与YOLO的框是否足够接近,
    若满足条件则调用SAM获取精准掩码作为GT。
    """
    image_np = np.array(image)  
    x1_rect, y1_rect = random_rectangle[0]
    x2_rect, y2_rect = random_rectangle[1]
    rect_mask = np.zeros(image_np.shape[:2], dtype=np.uint8)
    cv2.rectangle(rect_mask, (x1_rect, y1_rect), (x2_rect, y2_rect), color=255, thickness=-1)

    rect_box = [min(x1_rect, x2_rect), min(y1_rect, y2_rect), max(x1_rect, x2_rect), max(y1_rect, y2_rect)]

    for box in yolo_boxes:
        iou = calculate_iou(rect_box, box)
        print(f"与YOLO box的IoU为: {iou}, 阈值: {threshold_iou}")
        
        if iou >= threshold_iou:
            # 在YOLO框内随机取两个点
            x_min, y_min, x_max, y_max = box
            input_point1 = (np.random.randint(x_min, x_max), np.random.randint(y_min, y_max))
            input_point2 = (np.random.randint(x_min, x_max), np.random.randint(y_min, y_max))
            input_point3 = (np.random.randint(x_min, x_max), np.random.randint(y_min, y_max))

            # 使用SAM生成精准掩码
            gt_mask = get_gt_mask_from_sam(image, sam2_model, [input_point1, input_point2,input_point3], rect_mask)
            mask_img[gt_mask > 0] = 0
            # 保存gt掩码
            cv2.imwrite('gt_mask_from_sam.png', gt_mask)
            print(f"SAM生成的GT掩码已保存至 gt_mask_from_sam.png")

            return gt_mask,mask_img
    h, w = image_np.shape[:2]
    black_mask = np.zeros((h, w), dtype=np.uint8)
    no_match_save_path = 'gt_mask_from_sam.png'
    cv2.imwrite(no_match_save_path, black_mask)
    print("未找到满足阈值条件的YOLO box。")
    print(f"未匹配成功,保存空掩码图至 {no_match_save_path}")
    return None,mask_img

def calculate_iou(boxA, boxB):
    """计算两个box的IoU."""
    xA = max(boxA[0], boxB[0])
    yA = max(boxA[1], boxB[1])
    xB = min(boxA[2], boxB[2])
    yB = min(boxA[3], boxB[3])

    inter_area = max(0, xB - xA + 1) * max(0, yB - yA + 1)

    boxA_area = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
    boxB_area = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)

    iou = inter_area / float(boxA_area + boxB_area - inter_area)
    return iou

def get_gt_mask_from_sam(image, sam2_model, input_points, rect_mask):
    """使用SAM根据两个点生成掩码,并保存选取点和掩码图"""
    predictor = SAM2ImagePredictor(sam2_model)
    print("load sam2")
    predictor.set_image(image)

    input_point_np = np.array(input_points)
    input_label = np.array([1, 1,1])

    masks, _, _ = predictor.predict(
        point_coords=input_point_np,
        point_labels=input_label,
        multimask_output=False,
    )

    mask_img = masks[0].astype(np.uint8) * 255
    # mask_img[rect_mask == 255] = 0  # 将 `random_rectangle` 区域设为黑色

    # 保存SAM生成的掩码图
    mask_save_path = 'sam_gt_mask.jpg'
    cv2.imwrite(mask_save_path, mask_img)
    print(f"SAM生成的掩码已保存至 {mask_save_path}")

    # 把选取的两个点画在原图上
    image_with_points = np.array(image).copy()
    for point in input_points:
        cv2.circle(image_with_points, point, radius=5, color=(255, 0, 0), thickness=-1)

    # 保存带有标记点的原图
    point_marked_save_path = 'image_with_points.jpg'
    image_bgr = cv2.cvtColor(image_with_points, cv2.COLOR_RGB2BGR)
    cv2.imwrite(point_marked_save_path, image_bgr)
    print(f"带点标记的原图已保存至 {point_marked_save_path}")

    return mask_img

def show_points(coords, labels, ax, marker_size=375):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)   

def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))    

def display_mask(mask, ax, random_color=False, borders = True):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask = mask.astype(np.uint8)
    mask_image =  mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    if borders:
        import cv2
        contours, _ = cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) 
        # Try to smooth contours
        contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
        mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2) 
        cv2.imwrite("check.jpg", mask_image)
    ax.imshow(mask_image)
    
def random_points_below(point, radius, min_distance, model, image, max_attempts=100):
    """
    在给定的point偏下方50像素的区域内,随机选择两个点直到满足条件。
    
    参数:
    - point: (x, y) 格式的坐标
    - radius: 随机点的最大半径
    - min_distance: 两个随机点之间的最小距离
    - max_attempts: 最大尝试次数,避免死循环
    
    返回:
    - 两个随机点的坐标,如果没有找到合适的点则返回None
    """
    for _ in range(max_attempts):
        # 在点的偏下方50像素区域内随机选择两个点
        x1 = random.randint(point[0] - radius, point[0] + radius)
        y1 = random.randint(point[1] + 50, point[1] + 50 + radius)  # 偏下50像素
        
        x2 = random.randint(point[0] - radius, point[0] + radius)
        y2 = random.randint(point[1] + 50, point[1] + 50 + radius)  # 偏下50像素
        
        # 计算两个点之间的欧几里得距离
        distance = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
        
        # 检查距离条件
        if distance >= min_distance and is_point_in_car_area((x1, y1), model, image) and is_point_in_car_area((x2, y2), model, image) :
            return [(x1, y1), (x2, y2)]
    
    # 如果超过最大尝试次数还没有找到合适的点,返回None
    return None
    

def show_masks(image, masks, scores, image_path, strategy,point_coords=None, box_coords=None, input_labels=None, borders=True, save_path=None):
    for i, (mask, score) in enumerate(zip(masks, scores)):
        plt.figure(figsize=(10, 10))
        plt.imshow(image)
        display_mask(mask, plt.gca(), borders=borders)
        if point_coords is not None:
            assert input_labels is not None
            show_points(point_coords, input_labels, plt.gca())
        if box_coords is not None:
            # boxes
            show_box(box_coords, plt.gca())
        plt.axis('off')
        plt.savefig('check.jpg', bbox_inches='tight', pad_inches=0)  # 保存图像
        point1,point2 = attention_mask(mask, plt.gca(), image_path,strategy,borders=borders, image=image, save_path=save_path)
        return point1,point2 

def random_crop(image, target_width, target_height, mask_point1, mask_point2):
    # global global_mask_point1_relative, global_mask_point2_relative
    """从两个对角点的中点裁剪指定宽度和高度的区域,避免超出图像边界"""
    width, height = image.size
    # 计算两个对角点的中点
    center_x = (mask_point1[0] + mask_point2[0]) // 2
    center_y = (mask_point1[1] + mask_point2[1]) // 2
    
    # 计算裁剪区域的左上角和右下角
    left = center_x - target_width // 2
    top = center_y - target_height // 2
    right = left + target_width
    bottom = top + target_height
    
    # 确保裁剪区域不会超出图像边界
    if left < 0:
        left = 0
        right = target_width
    if top < 0:
        top = 0
        bottom = target_height
    if right > width:
        right = width
        left = width - target_width
    if bottom > height:
        bottom = height
        top = height - target_height
    
    # 计算 padding
    top_padding = max(0, top)
    left_padding = max(0, left)
    
    # 裁剪图像
    cropped_image = image.crop((left, top, right, bottom))
    
    global_mask_point1_relative = (mask_point1[0] - left, mask_point1[1] - top)
    global_mask_point2_relative = (mask_point2[0] - left, mask_point2[1] - top)
    print("裁剪后点的相对位置为:")
    print("mask_point1:", global_mask_point1_relative)
    print("mask_point2:", global_mask_point2_relative)
    return cropped_image, top_padding, left_padding,global_mask_point1_relative,global_mask_point2_relative

def get_left_right_points(lane_data,image_path):
    lanes = lane_data["lanes"]
    h_samples = lane_data["h_samples"]
    model = load_yolov5_model()
    # 找到h_samples的中间索引
    mid_idx = len(h_samples) // 2
    image = cv2.imread(image_path)
    # 存储最左和最右的点
    left_point = None
    right_point = None
    points = []
    # 遍历每条车道线
    for lane in lanes:
        # 去掉值为-2的无效点
        valid_points = [(x, y) for x, y in zip(lane, h_samples) if x != -2]

        if valid_points:
            if lane[mid_idx] != -2:
                for i in range(mid_idx-2,0,-1):
                    left_point = lane[i] 
                    print(left_point)
                    if lane[i] != -2:
                        point = (left_point,h_samples[i])
                        FLAG = is_point_in_car_area(point, model, image)
                        print(point,FLAG)
                        if FLAG:
                            points.append((left_point,h_samples[i]))
                            break
            else:
                point = (1540/2, 590/2+30)  # 初始点坐标
                radius = 50         # 随机点的最大半径
                min_distance = 40   # 两个点之间的最小距离
                points = random_points_below(point, radius, min_distance,model,image)
                # first_non_minus_two = next((x for x in lane if x != -2), None)
                # if first_non_minus_two:
                #     idx = lane.index(first_non_minus_two)
                #     for i in range(idx+5,idx,-1):
                #         left_point = lane[i] 
                #         if lane[i] != -2:
                #             point = (left_point,h_samples[i])
                #             FLAG = is_point_in_car_area(point, model, image)
                #             if FLAG:
                #                 points.append((left_point,h_samples[i]))
                #                 break
                        
    # return left_point, right_point
    return points

def sam2segment(image_path,points,strategy):
    # print(points)
    image = Image.open(image_path)
    image = np.array(image.convert("RGB"))
    predictor.set_image(image)
    # print([points[0][0], points[0][1]])
    input_point = np.array([(points[0][0], points[0][1])])
    input_label = np.array([1])
    masks, scores, logits = predictor.predict(
    point_coords=input_point,
    point_labels=input_label,
    multimask_output=True,
    )
    sorted_ind = np.argsort(scores)[::-1]
    masks = masks[sorted_ind]
    scores = scores[sorted_ind]
    logits = logits[sorted_ind]
    #mask 
    mask_input = logits[np.argmax(scores), :, :]  # Choose the model's best mask
    points_set = []
    for point in points:
        points_set.append((point[0], point[1]))
    # print(points_set)
    input_point = np.array(points_set)
    input_label = np.array([1]*len(points_set))
    masks, scores, _ = predictor.predict(
    point_coords=input_point,
    point_labels=input_label,
    mask_input=mask_input[None, :, :],
    multimask_output=False,
    )
    # random_mask_selection(image, masks, mask_index=0,output_path="cropped_image.jpg")
    point1,point2 = show_masks(image, masks, scores, image_path, strategy,save_path="masked_image.jpg")
    return point1,point2

def draw_point(image_path,points):
    image = cv2.imread(image_path)
    if image is not None:
        # 绘制点
        for point in points:
            cv2.circle(image, point, radius=5, color=(0, 255, 0), thickness=-1)  # 绿色点

        # 保存图像
        output_path = "output_image_with_points.jpg"
        cv2.imwrite(output_path, image)
        print(f"Image saved with points at {output_path}")
    else:
        print("Error: Image could not be loaded.")
        
def generate_mask(original_img_path, point1, point2):
    """根据坐标生成掩码图像"""
    # 读取原图
    original_img = cv2.imread(original_img_path)
    
    # 获取原图的尺寸
    height, width, _ = original_img.shape

    # 创建一个黑色的 mask 图像,尺寸与原图相同
    mask = np.zeros((height, width), dtype=np.uint8)

    # 计算3/4点
    three_quarter_point = (
        int(point1[0] + 0.95 * (point2[0] - point1[0])),  # 计算 x 坐标
        int(point1[1] + 0.95 * (point2[1] - point1[1]))   # 计算 y 坐标
    )

    # 画出一个白色的矩形(将该区域填充为白色)
    cv2.rectangle(mask, point1, three_quarter_point, color=255, thickness=-1)

    # 保存生成的mask图像
    mask_path = original_img_path.replace('test.jpg', 'mask_test.jpg')
    cv2.imwrite(mask_path, mask)
    print(mask_path)
    return mask_path, point1, three_quarter_point

    def extract_lanes_in_crop(lane_data, crop_x_min, crop_x_max, crop_y_min, crop_y_max):
        """
        过滤 TuSimple `lanes`,只保留 `crop` 内的部分
        """
        cropped_lanes = []
        for lane in lane_data["lanes"]:
            cropped_lane = []
            for x, y in zip(lane, lane_data["h_samples"]):
                if x != -2 and crop_x_min <= x <= crop_x_max and crop_y_min <= y <= crop_y_max:
                    cropped_lane.append((x, y))
                    # new_x = x - crop_x_min
                    # new_y = y - crop_y_min
                    # cropped_lane.append((new_x, new_y))
            if cropped_lane:
                cropped_lanes.append(cropped_lane)

        return cropped_lanes


def generate_trigger_crop(image_path: str, lane_data: dict):
    """
    输入一张图像路径,返回处理后的 crop 图像和 crop mask 图像路径。
    """
    # 1. 获取触发点
    points = get_left_right_points(lane_data, image_path)
    print(f"[INFO] 获取 trigger 点: {points}")
    draw_point(image_path, points)

    # 2. 使用 SAM2 获取 mask 点
    image = load_image(image_path)
    mask_point1, mask_point2 = sam2segment(image_path, points, "LDA")

    # 3. Crop 原图
    input_image, *_ = random_crop(image, 512, 512, mask_point1, mask_point2)
    input_crop_path = "crop.jpg"
    input_image.save(input_crop_path)

    # 4. 生成 trigger mask
    mask_path, point1, point2 = generate_mask(image_path, mask_point1, mask_point2)
    mask_img = load_image(mask_path)
    mask_img, *_ = random_crop(mask_img, 512, 512, mask_point1, mask_point2)
    crop_mask_path = "crop_mask.jpg"
    cv2.imwrite(crop_mask_path, np.array(mask_img))

    return input_crop_path, crop_mask_path

if __name__ == "__main__":
    lane_data = {"lanes": [[-2, -2, -2, -2, -2, -2, -2, 814, 751, 688, 625, 562, 500, 438, 373, 305, 234, 160, 88, 16, -64, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2], [-2, -2, -2, -2, -2, -2, -2, 818, 801, 784, 768, 751, 734, 717, 701, 685, 668, 651, 634, 618, 601, 585, 568, 551, 535, 518, 502, 484, 468, 451, 435, 418, 401, 385, 368, 351, 335, 318, 301, 287], [-2, -2, -2, -2, -2, -2, -2, 863, 872, 881, 890, 899, 908, 918, 927, 936, 945, 954, 964, 972, 982, 991, 1000, 1009, 1018, 1027, 1036, 1046, 1055, 1064, 1073, 1082, 1091, 1100, 1109, 1119, 1128, 1137, 1146, 1154]], "h_samples": [200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590], "raw_file": "driver_182_30frame/06010513_0036.MP4/00270.jpg"}

    image_path = "driver_182_30frame/06010513_0036.MP4/00270.jpg" 
    points = get_left_right_points(lane_data,image_path)
    print(points)
    draw_point(image_path,points)
    # left_point, right_point = get_left_right_points(lane_data)
    # print(f"Left point: {left_point}, Right point: {right_point}")
    # sam2segment(image_path,left_point, right_point)
    image = load_image(image_path)
    mask_point1,mask_point2 = sam2segment(image_path,points,"LDA")
    input_image,top_padding,left_padding,global_mask_point1_relative,global_mask_point2_relative = random_crop(image, 512, 512, mask_point1, mask_point2)
    input_image.save("crop.jpg")  # 直接用 PIL 的 `save()` 方法
    print(f"Image saved with points at crop.jpg")
    mask_path, point1, point2 = generate_mask('culane_test.jpg', mask_point1, mask_point2)
    mask_img = load_image(mask_path)
    mask_img,top_padding,left_padding,global_mask_point1_relative,global_mask_point2_relative = random_crop(mask_img, 512, 512,mask_point1,mask_point2)
    
    mask_img = np.array(mask_img)
    # print(mask_img.shape)
    model = load_yolov5_model()
    yolo_results = model(input_image)
    yolo_boxes = []
    car_class_id = [2, 5, 7]  # 汽车、巴士、卡车等类别ID,根据实际情况调整

    for result in yolo_results:
        boxes = result.boxes.xyxy.cpu().numpy()
        class_ids = result.boxes.cls.cpu().numpy().astype(int)

        for box, cls in zip(boxes, class_ids):
            if cls in car_class_id:
                x_min, y_min, x_max, y_max = box[:4]
                yolo_boxes.append([int(x_min), int(y_min), int(x_max), int(y_max)])
    _,mask_img=generate_gt_mask_from_intersection([global_mask_point1_relative,global_mask_point2_relative], yolo_boxes, input_image, mask_img,sam2_model, threshold_iou=0.01)
    cv2.imwrite("crop_mask.jpg", mask_img)

    print("Mask 已成功保存至 crop_mask.jpg")
    crop_x_min = min(mask_point1[0], mask_point2[0])
    crop_x_max = max(mask_point1[0], mask_point2[0])
    crop_y_min = min(mask_point1[1], mask_point2[1])
    crop_y_max = max(mask_point1[1], mask_point2[1])


    def extract_lanes_in_crop(lane_data, crop_x_min, crop_x_max, crop_y_min, crop_y_max):
        """
        过滤 TuSimple `lanes`,只保留 `crop` 内的部分
        """
        cropped_lanes = []
        for lane in lane_data["lanes"]:
            cropped_lane = []
            for x, y in zip(lane, lane_data["h_samples"]):
                if x != -2 and crop_x_min <= x <= crop_x_max and crop_y_min <= y <= crop_y_max:
                    cropped_lane.append((x, y))
                    # new_x = x - crop_x_min
                    # new_y = y - crop_y_min
                    # cropped_lane.append((new_x, new_y))
            if cropped_lane:
                cropped_lanes.append(cropped_lane)

        return cropped_lanes

    # **获取在 crop 范围内的 lane**
    cropped_lanes = extract_lanes_in_crop(lane_data, crop_x_min, crop_x_max, crop_y_min, crop_y_max)
    # print(cropped_lanes)
    # def draw_lane_mask(image, lanes):
    #     """
    #     画出 `lane_mask` 只在 `crop` 图像中
    #     """
    #     height, width, _ = image.shape
    #     lane_mask = np.zeros((height, width), dtype=np.uint8)

    #     for lane in lanes:
    #         points = np.array(lane, dtype=np.int32)
    #         cv2.polylines(lane_mask, [points], isClosed=False, color=255, thickness=5)

    #     return lane_mask

    # crop_image = load_image("crop.jpg").convert("RGB")
    # crop_image = np.array(crop_image)
    # lane_mask = draw_lane_mask(crop_image, cropped_lanes)
    def draw_lane_mask_on_original(image, cropped_lanes):
        """
        在原图上绘制 **仅包含 cropped_lanes** 的车道线
        """
        height, width, _ = image.shape
        lane_mask = np.zeros((height, width), dtype=np.uint8)

        for lane in cropped_lanes:
            points = np.array(lane, dtype=np.int32)
            cv2.polylines(lane_mask, [points], isClosed=False, color=255, thickness=10)

        return lane_mask
    
    def random_crop_lane(image, target_width, target_height, mask_point1, mask_point2):
        """从两个对角点的中点裁剪指定宽度和高度的区域,避免超出图像边界"""
        
        # **确保 image 是 NumPy 数组**
        if isinstance(image, Image.Image):
            image = np.array(image)

        height, width = image.shape[:2]  # 获取 NumPy 数组的大小

        # 计算两个对角点的中点
        center_x = (mask_point1[0] + mask_point2[0]) // 2
        center_y = (mask_point1[1] + mask_point2[1]) // 2

        # 计算裁剪区域的左上角和右下角
        left = max(0, center_x - target_width // 2)
        top = max(0, center_y - target_height // 2)
        right = min(width, left + target_width)
        bottom = min(height, top + target_height)

        # 计算 padding(如果裁剪区域超出边界)
        top_padding = max(0, target_height - (bottom - top))
        left_padding = max(0, target_width - (right - left))

        # **使用 NumPy 进行裁剪**
        cropped_image = image[top:bottom, left:right]

        return cropped_image, top_padding, left_padding
    # **绘制 lane_mask 在原图上**
    raw_image = np.array(load_image(image_path).convert("RGB"))
    lane_mask = draw_lane_mask_on_original(raw_image, cropped_lanes)
    lane_mask_pil = Image.fromarray(lane_mask) 
    crop_image,top_padding,left_padding,global_mask_point1_relative,global_mask_point2_relative = random_crop(lane_mask_pil, 512, 512,mask_point1,mask_point2)

    # **保存 lane_mask**
    crop_image.save("lane_mask_crop.jpg")
    print("✅ 车道 Mask 已保存为 lane_mask_crop.jpg")
    
    crop_img = cv2.imread("crop.jpg")  # 读取原图(BGR格式)
    mask_img = cv2.imread("crop_mask.jpg", cv2.IMREAD_GRAYSCALE)  # 读取掩码(灰度图)
    if crop_img.shape[:2] != mask_img.shape:
        print("⚠️ Resizing mask to match crop image size...")
        mask_img = cv2.resize(mask_img, (crop_img.shape[1], crop_img.shape[0]))
    white_overlay = np.ones_like(crop_img) * 255  # 生成全白图
    masked_result = np.where(mask_img[:, :, None] == 255, white_overlay, crop_img)  # 只替换白色部分

    # **保存叠加后的图像**
    cv2.imwrite("crop_with_mask.jpg", masked_result)
    print("✅ 叠加后的 Mask 图像已保存至 crop_with_mask.jpg")