Spaces:
Sleeping
Sleeping
Update app3.py
Browse files
app3.py
CHANGED
|
@@ -7,280 +7,259 @@ import base64
|
|
| 7 |
import matplotlib.gridspec as gridspec
|
| 8 |
import math
|
| 9 |
from matplotlib.backends.backend_pdf import PdfPages
|
| 10 |
-
from matplotlib.patches import
|
| 11 |
|
|
|
|
| 12 |
SPLIT_TIME = "17:30"
|
| 13 |
BUSINESS_START = "09:30"
|
| 14 |
BUSINESS_END = "01:30"
|
| 15 |
BORDER_COLOR = '#A9A9A9'
|
| 16 |
DATE_COLOR = '#A9A9A9'
|
|
|
|
| 17 |
|
| 18 |
def process_schedule(file):
|
| 19 |
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
|
| 20 |
try:
|
| 21 |
# 读取 Excel,跳过前 8 行
|
| 22 |
df = pd.read_excel(file, skiprows=8)
|
| 23 |
-
|
| 24 |
# 提取所需列 (G9, H9, J9)
|
| 25 |
df = df.iloc[:, [6, 7, 9]] # G, H, J 列
|
| 26 |
df.columns = ['Hall', 'StartTime', 'EndTime']
|
| 27 |
-
|
| 28 |
# 清理数据
|
| 29 |
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
|
| 30 |
-
|
| 31 |
# 转换影厅格式为 "#号" 格式
|
| 32 |
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + ' '
|
| 33 |
-
|
| 34 |
# 保存原始时间字符串用于诊断
|
| 35 |
df['original_end'] = df['EndTime']
|
| 36 |
-
|
| 37 |
# 转换时间为 datetime 对象
|
| 38 |
base_date = datetime.today().date()
|
| 39 |
-
|
| 40 |
-
df['
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
# 设置基准时间
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
#
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
for idx, row in df.iterrows():
|
| 52 |
-
end_time = row['EndTime']
|
| 53 |
-
if end_time.hour < 9:
|
| 54 |
-
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
|
| 55 |
-
|
| 56 |
-
if row['StartTime'].hour >= 21 and end_time.hour < 9:
|
| 57 |
-
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
|
| 58 |
-
|
| 59 |
-
# 筛选营业时间内的场次
|
| 60 |
-
df['time_for_comparison'] = df['EndTime'].apply(
|
| 61 |
-
lambda x: datetime.combine(base_date, x.time())
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1)
|
| 65 |
-
|
| 66 |
-
valid_times = (
|
| 67 |
-
((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) &
|
| 68 |
-
(df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time())))
|
| 69 |
)
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
df = df.sort_values('EndTime')
|
| 75 |
-
|
| 76 |
# 分割数据
|
| 77 |
-
|
| 78 |
-
split_time_for_comparison = df['time_for_comparison'].apply(
|
| 79 |
-
lambda x: datetime.combine(base_date, split_time.time())
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
part1 = df[df['time_for_comparison'] <= split_time_for_comparison].copy()
|
| 83 |
-
part2 = df[df['time_for_comparison'] > split_time_for_comparison].copy()
|
| 84 |
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
| 86 |
for part in [part1, part2]:
|
| 87 |
-
part['
|
| 88 |
-
|
| 89 |
-
#
|
| 90 |
-
date_df = pd.read_excel(
|
| 91 |
-
file,
|
| 92 |
-
skiprows=5, # 跳过前5行(0-4)
|
| 93 |
-
nrows=1, # 只读1行
|
| 94 |
-
usecols=[2], # 第三列(C列)
|
| 95 |
-
header=None # 无表头
|
| 96 |
-
)
|
| 97 |
date_cell = date_df.iloc[0, 0]
|
| 98 |
-
|
| 99 |
try:
|
| 100 |
-
# 处理不同日期格式
|
| 101 |
if isinstance(date_cell, str):
|
|
|
|
| 102 |
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
|
| 103 |
else:
|
|
|
|
| 104 |
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
|
| 105 |
except:
|
| 106 |
date_str = datetime.today().strftime('%Y-%m-%d')
|
| 107 |
-
|
| 108 |
-
return part1[['Hall', '
|
| 109 |
-
|
| 110 |
except Exception as e:
|
| 111 |
st.error(f"处理文件时出错: {str(e)}")
|
| 112 |
return None, None, None
|
| 113 |
|
|
|
|
| 114 |
def create_print_layout(data, title, date_str):
|
| 115 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
if data.empty:
|
| 117 |
return None
|
| 118 |
|
| 119 |
-
# ---
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
# ---
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
#
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
#
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
# --- 保存 PNG ---
|
| 239 |
png_buffer = io.BytesIO()
|
| 240 |
-
|
| 241 |
-
png_fig.savefig(png_buffer, format='png', bbox_inches='tight', pad_inches=0.02)
|
| 242 |
png_buffer.seek(0)
|
| 243 |
png_base64 = base64.b64encode(png_buffer.getvalue()).decode()
|
| 244 |
-
plt.close(png_fig)
|
| 245 |
|
| 246 |
-
#
|
| 247 |
pdf_buffer = io.BytesIO()
|
| 248 |
-
|
| 249 |
-
# 可以尝试减小 pad_inches, even set to 0
|
| 250 |
-
pdf.savefig(pdf_fig, bbox_inches='tight', pad_inches=0.02)
|
| 251 |
pdf_buffer.seek(0)
|
| 252 |
pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
|
| 253 |
-
|
|
|
|
| 254 |
|
| 255 |
return {
|
| 256 |
'png': f'data:image/png;base64,{png_base64}',
|
| 257 |
'pdf': f'data:application/pdf;base64,{pdf_base64}'
|
| 258 |
}
|
| 259 |
|
| 260 |
-
# --- 新增 PDF 显示函数 ---
|
| 261 |
def display_pdf(base64_pdf):
|
| 262 |
"""在Streamlit中嵌入显示PDF"""
|
| 263 |
pdf_display = f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
|
| 264 |
return pdf_display
|
| 265 |
|
| 266 |
-
# Streamlit
|
| 267 |
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
|
| 268 |
st.title("散厅时间快捷打印")
|
| 269 |
|
| 270 |
-
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls"])
|
| 271 |
|
| 272 |
if uploaded_file:
|
|
|
|
| 273 |
part1, part2, date_str = process_schedule(uploaded_file)
|
| 274 |
-
|
| 275 |
if part1 is not None and part2 is not None:
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
| 279 |
|
| 280 |
col1, col2 = st.columns(2)
|
| 281 |
|
| 282 |
with col1:
|
| 283 |
-
st.subheader("
|
| 284 |
if part1_output:
|
| 285 |
tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"])
|
| 286 |
with tab1_1:
|
|
@@ -291,7 +270,7 @@ if uploaded_file:
|
|
| 291 |
st.info("白班部分没有数据")
|
| 292 |
|
| 293 |
with col2:
|
| 294 |
-
st.subheader("
|
| 295 |
if part2_output:
|
| 296 |
tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"])
|
| 297 |
with tab2_1:
|
|
@@ -299,6 +278,4 @@ if uploaded_file:
|
|
| 299 |
with tab2_2:
|
| 300 |
st.image(part2_output['png'])
|
| 301 |
else:
|
| 302 |
-
st.info("夜班部分没有数据")
|
| 303 |
-
|
| 304 |
-
|
|
|
|
| 7 |
import matplotlib.gridspec as gridspec
|
| 8 |
import math
|
| 9 |
from matplotlib.backends.backend_pdf import PdfPages
|
| 10 |
+
from matplotlib.patches import Rectangle # Replaced FancyBboxPatch
|
| 11 |
|
| 12 |
+
# --- Constants ---
|
| 13 |
SPLIT_TIME = "17:30"
|
| 14 |
BUSINESS_START = "09:30"
|
| 15 |
BUSINESS_END = "01:30"
|
| 16 |
BORDER_COLOR = '#A9A9A9'
|
| 17 |
DATE_COLOR = '#A9A9A9'
|
| 18 |
+
SEQ_COLOR = '#A9A9A9' # Color for the new serial number
|
| 19 |
|
| 20 |
def process_schedule(file):
|
| 21 |
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
|
| 22 |
try:
|
| 23 |
# 读取 Excel,跳过前 8 行
|
| 24 |
df = pd.read_excel(file, skiprows=8)
|
| 25 |
+
|
| 26 |
# 提取所需列 (G9, H9, J9)
|
| 27 |
df = df.iloc[:, [6, 7, 9]] # G, H, J 列
|
| 28 |
df.columns = ['Hall', 'StartTime', 'EndTime']
|
| 29 |
+
|
| 30 |
# 清理数据
|
| 31 |
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
|
| 32 |
+
|
| 33 |
# 转换影厅格式为 "#号" 格式
|
| 34 |
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + ' '
|
| 35 |
+
|
| 36 |
# 保存原始时间字符串用于诊断
|
| 37 |
df['original_end'] = df['EndTime']
|
| 38 |
+
|
| 39 |
# 转换时间为 datetime 对象
|
| 40 |
base_date = datetime.today().date()
|
| 41 |
+
# Using errors='coerce' will turn unparseable times into NaT (Not a Time)
|
| 42 |
+
df['StartTime'] = pd.to_datetime(df['StartTime'], errors='coerce')
|
| 43 |
+
df['EndTime'] = pd.to_datetime(df['EndTime'], errors='coerce')
|
| 44 |
+
df = df.dropna(subset=['StartTime', 'EndTime']) # Drop rows where time conversion failed
|
| 45 |
+
|
| 46 |
# 设置基准时间
|
| 47 |
+
business_start_time = datetime.strptime(BUSINESS_START, "%H:%M").time()
|
| 48 |
+
business_end_time = datetime.strptime(BUSINESS_END, "%H:%M").time()
|
| 49 |
+
|
| 50 |
+
# 处理跨天情况:结束时间小于开始时间,则结束时间加一天
|
| 51 |
+
# This logic handles cases like 9:30 AM to 1:30 AM (next day)
|
| 52 |
+
df['EndTime_adjusted'] = df.apply(
|
| 53 |
+
lambda row: row['EndTime'] + timedelta(days=1) if row['EndTime'].time() < row['StartTime'].time() else row['EndTime'],
|
| 54 |
+
axis=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
)
|
| 56 |
|
| 57 |
+
# 按散场时间排序 (using the adjusted time)
|
| 58 |
+
df = df.sort_values('EndTime_adjusted')
|
| 59 |
+
|
|
|
|
|
|
|
| 60 |
# 分割数据
|
| 61 |
+
split_dt = datetime.strptime(SPLIT_TIME, "%H:%M").time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
part1 = df[df['EndTime_adjusted'].dt.time <= split_dt].copy()
|
| 64 |
+
part2 = df[df['EndTime_adjusted'].dt.time > split_dt].copy()
|
| 65 |
+
|
| 66 |
+
# 格式化时间显示 (use original EndTime for display)
|
| 67 |
for part in [part1, part2]:
|
| 68 |
+
part['EndTime_formatted'] = part['EndTime'].dt.strftime('%-I:%M')
|
| 69 |
+
|
| 70 |
+
# 读取日期单元格 C6
|
| 71 |
+
date_df = pd.read_excel(file, skiprows=5, nrows=1, usecols=[2], header=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
date_cell = date_df.iloc[0, 0]
|
| 73 |
+
|
| 74 |
try:
|
|
|
|
| 75 |
if isinstance(date_cell, str):
|
| 76 |
+
# Assuming format like '2023-10-27'
|
| 77 |
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
|
| 78 |
else:
|
| 79 |
+
# Assuming it's a datetime object
|
| 80 |
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
|
| 81 |
except:
|
| 82 |
date_str = datetime.today().strftime('%Y-%m-%d')
|
| 83 |
+
|
| 84 |
+
return part1[['Hall', 'EndTime_formatted']], part2[['Hall', 'EndTime_formatted']], date_str
|
| 85 |
+
|
| 86 |
except Exception as e:
|
| 87 |
st.error(f"处理文件时出错: {str(e)}")
|
| 88 |
return None, None, None
|
| 89 |
|
| 90 |
+
|
| 91 |
def create_print_layout(data, title, date_str):
|
| 92 |
+
"""
|
| 93 |
+
创建符合新要求的打印布局 (PNG 和 PDF)。
|
| 94 |
+
1. 动态计算边距。
|
| 95 |
+
2. 使用灰色虚线圆点作为单元格边框。
|
| 96 |
+
3. 单元格内容区域为单元格的90%。
|
| 97 |
+
4. 在左上角添加灰色序号。
|
| 98 |
+
"""
|
| 99 |
if data.empty:
|
| 100 |
return None
|
| 101 |
|
| 102 |
+
# --- Constants ---
|
| 103 |
+
A5_WIDTH_IN = 5.83
|
| 104 |
+
A5_HEIGHT_IN = 8.27
|
| 105 |
+
DPI = 300
|
| 106 |
+
NUM_COLS = 3
|
| 107 |
+
|
| 108 |
+
# --- Setup Figure ---
|
| 109 |
+
fig = plt.figure(figsize=(A5_WIDTH_IN, A5_HEIGHT_IN), dpi=DPI)
|
| 110 |
+
|
| 111 |
+
# --- Font Setup ---
|
| 112 |
+
plt.rcParams['font.family'] = 'sans-serif'
|
| 113 |
+
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS', 'Heiti TC', 'sans-serif']
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# --- Data Preparation ---
|
| 117 |
+
total_items = len(data)
|
| 118 |
+
# Augment data with an original index for numbering
|
| 119 |
+
data_values_with_index = [(i, row) for i, row in enumerate(data.values.tolist())]
|
| 120 |
+
|
| 121 |
+
# Pad data to be a multiple of NUM_COLS
|
| 122 |
+
padded_total = math.ceil(total_items / NUM_COLS) * NUM_COLS
|
| 123 |
+
while len(data_values_with_index) < padded_total:
|
| 124 |
+
data_values_with_index.append((None, ['', '']))
|
| 125 |
+
|
| 126 |
+
num_rows = padded_total // NUM_COLS
|
| 127 |
+
|
| 128 |
+
# --- Layout Calculation (Request 1) ---
|
| 129 |
+
if num_rows > 0:
|
| 130 |
+
# "A5 paper height / num_rows / 4 is the padding for all sides"
|
| 131 |
+
padding_in = (A5_HEIGHT_IN / num_rows / 4)
|
| 132 |
+
# Cap padding to prevent it from being excessively large
|
| 133 |
+
padding_in = min(padding_in, 0.5)
|
| 134 |
+
else:
|
| 135 |
+
padding_in = 0.25 # Default padding if no rows
|
| 136 |
+
|
| 137 |
+
# Convert padding to relative figure coordinates for subplots_adjust
|
| 138 |
+
left_margin = padding_in / A5_WIDTH_IN
|
| 139 |
+
right_margin = 1 - left_margin
|
| 140 |
+
bottom_margin = padding_in / A5_HEIGHT_IN
|
| 141 |
+
top_margin = 1 - bottom_margin
|
| 142 |
+
|
| 143 |
+
# Adjust overall figure margins
|
| 144 |
+
fig.subplots_adjust(left=left_margin, right=right_margin, top=top_margin, bottom=bottom_margin, hspace=0.4, wspace=0.4)
|
| 145 |
+
|
| 146 |
+
# --- Grid & Font Size ---
|
| 147 |
+
gs = gridspec.GridSpec(num_rows + 1, NUM_COLS, height_ratios=[0.2] + [1] * num_rows, figure=fig)
|
| 148 |
+
|
| 149 |
+
if num_rows > 0:
|
| 150 |
+
content_area_height_in = A5_HEIGHT_IN * (top_margin - bottom_margin)
|
| 151 |
+
cell_height_in = content_area_height_in / num_rows * (1 - fig.subplotpars.hspace)
|
| 152 |
+
base_fontsize = min(40, max(10, cell_height_in * 72 * 0.4)) # 72 pt/inch, 40% of cell height
|
| 153 |
+
else:
|
| 154 |
+
base_fontsize = 20
|
| 155 |
+
|
| 156 |
+
# --- Z-Sort (Column-major) Data for Layout ---
|
| 157 |
+
rows_per_col_layout = num_rows
|
| 158 |
+
sorted_data = [(None, ['',''])] * padded_total
|
| 159 |
+
for i, item_tuple in enumerate(data_values_with_index):
|
| 160 |
+
if item_tuple[0] is not None:
|
| 161 |
+
original_data_index = i # Index from the time-sorted list
|
| 162 |
+
row_in_col = original_data_index % rows_per_col_layout
|
| 163 |
+
col_idx = original_data_index // rows_per_col_layout
|
| 164 |
+
new_grid_index = row_in_col * NUM_COLS + col_idx
|
| 165 |
+
if new_grid_index < len(sorted_data):
|
| 166 |
+
sorted_data[new_grid_index] = item_tuple
|
| 167 |
+
|
| 168 |
+
# --- Drawing Logic ---
|
| 169 |
+
for grid_idx, item_tuple in enumerate(sorted_data):
|
| 170 |
+
original_index, (hall, end_time) = item_tuple
|
| 171 |
+
|
| 172 |
+
if original_index is not None:
|
| 173 |
+
row_grid = grid_idx // NUM_COLS + 1 # +1 because date is in row 0
|
| 174 |
+
col_grid = grid_idx % NUM_COLS
|
| 175 |
+
|
| 176 |
+
ax = fig.add_subplot(gs[row_grid, col_grid])
|
| 177 |
+
ax.set_axis_off()
|
| 178 |
+
|
| 179 |
+
# --- Cell Border (Request 2) & Content Area (Request 3) ---
|
| 180 |
+
# Draw a dotted rectangle. Content will be placed inside this.
|
| 181 |
+
# Making the rect slightly smaller creates a visual 90% area.
|
| 182 |
+
cell_border = Rectangle((0.05, 0.05), 0.9, 0.9,
|
| 183 |
+
edgecolor=BORDER_COLOR,
|
| 184 |
+
facecolor='none',
|
| 185 |
+
linestyle=(0, (1, 1.5)), # Dotted line with round caps
|
| 186 |
+
linewidth=1,
|
| 187 |
+
transform=ax.transAxes,
|
| 188 |
+
clip_on=False)
|
| 189 |
+
ax.add_patch(cell_border)
|
| 190 |
+
|
| 191 |
+
# --- Cell Content ---
|
| 192 |
+
display_text = f"{hall}{end_time}"
|
| 193 |
+
ax.text(0.5, 0.5, display_text,
|
| 194 |
+
fontsize=base_fontsize,
|
| 195 |
+
fontweight='bold',
|
| 196 |
+
ha='center', va='center',
|
| 197 |
+
transform=ax.transAxes)
|
| 198 |
+
|
| 199 |
+
# --- Cell Numbering (Request 4) ---
|
| 200 |
+
# Serial number is original_index + 1
|
| 201 |
+
ax.text(0.12, 0.82, str(original_index + 1),
|
| 202 |
+
fontsize=base_fontsize * 0.5,
|
| 203 |
+
color=SEQ_COLOR,
|
| 204 |
+
fontweight='normal',
|
| 205 |
+
ha='center', va='center',
|
| 206 |
+
transform=ax.transAxes)
|
| 207 |
+
|
| 208 |
+
# --- Date Header ---
|
| 209 |
+
ax_date = fig.add_subplot(gs[0, :])
|
| 210 |
+
ax_date.set_axis_off()
|
| 211 |
+
ax_date.text(0, 0.5, f"{date_str} {title}",
|
| 212 |
+
fontsize=base_fontsize * 0.6,
|
| 213 |
+
color=DATE_COLOR,
|
| 214 |
+
fontweight='bold',
|
| 215 |
+
ha='left', va='center',
|
| 216 |
+
transform=ax_date.transAxes)
|
| 217 |
+
|
| 218 |
+
# --- Save to Buffers ---
|
| 219 |
+
# Save PNG
|
|
|
|
|
|
|
| 220 |
png_buffer = io.BytesIO()
|
| 221 |
+
fig.savefig(png_buffer, format='png', bbox_inches='tight', pad_inches=0.02)
|
|
|
|
| 222 |
png_buffer.seek(0)
|
| 223 |
png_base64 = base64.b64encode(png_buffer.getvalue()).decode()
|
|
|
|
| 224 |
|
| 225 |
+
# Save PDF
|
| 226 |
pdf_buffer = io.BytesIO()
|
| 227 |
+
fig.savefig(pdf_buffer, format='pdf', bbox_inches='tight', pad_inches=0.02)
|
|
|
|
|
|
|
| 228 |
pdf_buffer.seek(0)
|
| 229 |
pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
|
| 230 |
+
|
| 231 |
+
plt.close(fig)
|
| 232 |
|
| 233 |
return {
|
| 234 |
'png': f'data:image/png;base64,{png_base64}',
|
| 235 |
'pdf': f'data:application/pdf;base64,{pdf_base64}'
|
| 236 |
}
|
| 237 |
|
|
|
|
| 238 |
def display_pdf(base64_pdf):
|
| 239 |
"""在Streamlit中嵌入显示PDF"""
|
| 240 |
pdf_display = f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
|
| 241 |
return pdf_display
|
| 242 |
|
| 243 |
+
# --- Streamlit UI ---
|
| 244 |
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
|
| 245 |
st.title("散厅时间快捷打印")
|
| 246 |
|
| 247 |
+
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls", "xlsx"])
|
| 248 |
|
| 249 |
if uploaded_file:
|
| 250 |
+
# Use new column name 'EndTime_formatted' for display
|
| 251 |
part1, part2, date_str = process_schedule(uploaded_file)
|
|
|
|
| 252 |
if part1 is not None and part2 is not None:
|
| 253 |
+
part1_data_for_layout = part1[['Hall', 'EndTime_formatted']]
|
| 254 |
+
part2_data_for_layout = part2[['Hall', 'EndTime_formatted']]
|
| 255 |
+
|
| 256 |
+
part1_output = create_print_layout(part1_data_for_layout, "A", date_str)
|
| 257 |
+
part2_output = create_print_layout(part2_data_for_layout, "C", date_str)
|
| 258 |
|
| 259 |
col1, col2 = st.columns(2)
|
| 260 |
|
| 261 |
with col1:
|
| 262 |
+
st.subheader("白班散场预览(散场时间 ≤ 17:30)")
|
| 263 |
if part1_output:
|
| 264 |
tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"])
|
| 265 |
with tab1_1:
|
|
|
|
| 270 |
st.info("白班部分没有数据")
|
| 271 |
|
| 272 |
with col2:
|
| 273 |
+
st.subheader("夜班散场预览(散场时间 > 17:30)")
|
| 274 |
if part2_output:
|
| 275 |
tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"])
|
| 276 |
with tab2_1:
|
|
|
|
| 278 |
with tab2_2:
|
| 279 |
st.image(part2_output['png'])
|
| 280 |
else:
|
| 281 |
+
st.info("夜班部分没有数据")
|
|
|
|
|
|