import pandas as pd import streamlit as st from datetime import datetime, timedelta import matplotlib.pyplot as plt import io import base64 import matplotlib.gridspec as gridspec import math from matplotlib.backends.backend_pdf import PdfPages # The 'FancyBboxPatch' is no longer needed for the new border style. SPLIT_TIME = "17:30" BUSINESS_START = "09:30" BUSINESS_END = "01:30" BORDER_COLOR = 'gray' # Changed to gray for the new style DATE_COLOR = '#A9A9A9' def process_schedule(file): """处理上传的 Excel 文件,生成排序和分组后的打印内容""" try: # 读取 Excel,跳过前 8 行 df = pd.read_excel(file, skiprows=8) # 提取所需列 (G9, H9, J9) df = df.iloc[:, [6, 7, 9]] # G, H, J 列 df.columns = ['Hall', 'StartTime', 'EndTime'] # 清理数据 df = df.dropna(subset=['Hall', 'StartTime', 'EndTime']) # 转换影厅格式为 "#" 格式 (移除末尾空格) df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) # 保存原始时间字符串用于诊断 df['original_end'] = df['EndTime'] # 转换时间为 datetime 对象 base_date = datetime.today().date() df['StartTime'] = pd.to_datetime(df['StartTime']) df['EndTime'] = pd.to_datetime(df['EndTime']) # 设置基准时间 business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M") business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M") # 处理跨天情况 if business_end < business_start: business_end += timedelta(days=1) # 标准化所有时间到同一天 for idx, row in df.iterrows(): end_time = row['EndTime'] if end_time.hour < 9: df.at[idx, 'EndTime'] = end_time + timedelta(days=1) if row['StartTime'].hour >= 21 and end_time.hour < 9: df.at[idx, 'EndTime'] = end_time + timedelta(days=1) # 筛选营业时间内的场次 df['time_for_comparison'] = df['EndTime'].apply( lambda x: datetime.combine(base_date, x.time()) ) df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1) valid_times = ( ((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) & (df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time()))) ) df = df[valid_times] # 按散场时间排序 df = df.sort_values('EndTime') # 分割数据 split_time_obj = datetime.strptime(SPLIT_TIME, "%H:%M").time() split_datetime = datetime.combine(base_date, split_time_obj) part1 = df[df['time_for_comparison'] <= split_datetime].copy() part2 = df[df['time_for_comparison'] > split_datetime].copy() # 格式化时间显示 for part in [part1, part2]: # Use '%-H' for 24-hour format without leading zero on Linux/macOS # Use '%#H' on Windows. A more cross-platform way is to format and remove later. # Let's stick to '%H:%M' for universal 24-hour format e.g., "09:30" part['EndTime'] = part['EndTime'].dt.strftime('%H:%M') # 关键修改:精确读取C6单元格 date_df = pd.read_excel( file, skiprows=5, # 跳过前5行(0-4) nrows=1, # 只读1行 usecols=[2], # 第三列(C列) header=None # 无表头 ) date_cell = date_df.iloc[0, 0] try: # 处理不同日期格式 if isinstance(date_cell, str): date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d') else: date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d') except: date_str = datetime.today().strftime('%Y-%m-%d') return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str except Exception as e: st.error(f"处理文件时出错: {str(e)}") return None, None, None def create_print_layout(data, title, date_str): """创建打印布局 (PNG 和 PDF)""" if data.empty: return None # --- A5 Paper Dimensions in inches for precise layout --- A5_WIDTH_IN = 5.83 A5_HEIGHT_IN = 8.27 NUM_COLS = 3 # --- Create Figures for PNG and PDF --- png_fig = plt.figure(figsize=(A5_WIDTH_IN, A5_HEIGHT_IN), dpi=300) pdf_fig = plt.figure(figsize=(A5_WIDTH_IN, A5_HEIGHT_IN), dpi=300) # --- Internal drawing function to apply changes to both figures --- def process_figure(fig): plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] total_items = len(data) if total_items == 0: plt.close(fig) return # --- 1. Redesign Print Layout --- # Calculate number of rows needed num_rows = math.ceil(total_items / NUM_COLS) # Remove all padding from the figure edges fig.subplots_adjust(left=0, right=1, top=0.95, bottom=0) # Create a grid with no space between cells. A small top row for the date. gs = gridspec.GridSpec( num_rows + 1, NUM_COLS, hspace=0, wspace=0, height_ratios=[0.3] + [1] * num_rows, # Make date row shorter figure=fig ) data_values = data.values.tolist() # Pad data with empty values to make it a multiple of NUM_COLS while len(data_values) % NUM_COLS != 0: data_values.append(['', '']) # --- Sort data column-first (Z-pattern) --- rows_per_col_layout = math.ceil(len(data_values) / NUM_COLS) sorted_data = [['', '']] * len(data_values) for i, item in enumerate(data_values): if item[0] and item[1]: row_in_col = i % rows_per_col_layout col_idx = i // rows_per_col_layout new_index = row_in_col * NUM_COLS + col_idx if new_index < len(sorted_data): sorted_data[new_index] = item # --- Dynamic Font Size Calculation --- def get_dynamic_fontsize(text, cell_width_inches): if not text: return 1 # This factor is empirical, adjusts font size to fill ~90% of cell width # A lower factor (e.g., 0.5) results in larger text. ASPECT_RATIO_FACTOR = 0.55 num_chars = len(text) # Formula: (target_width_points) / (num_characters * aspect_ratio) fontsize = (cell_width_inches * 0.9 * 72) / (num_chars * ASPECT_RATIO_FACTOR) return max(10, fontsize) # Return at least size 10 cell_width_inches = A5_WIDTH_IN / NUM_COLS # --- Draw each data cell --- for idx, (hall, end_time) in enumerate(sorted_data): if hall and end_time: row_grid = idx // NUM_COLS + 1 # +1 to skip date row col_grid = idx % NUM_COLS ax = fig.add_subplot(gs[row_grid, col_grid]) display_text = f"{hall} {end_time}" # Calculate optimal font size fontsize = get_dynamic_fontsize(display_text, cell_width_inches) ax.text(0.5, 0.5, display_text, fontsize=fontsize, fontweight='bold', ha='center', va='center', transform=ax.transAxes) # --- 2. Change Cell Border --- # Set a dotted gray border for spine in ax.spines.values(): spine.set_visible(True) spine.set_linestyle((0, (1, 2))) # Dotted line: (0, (on, off)) spine.set_edgecolor(BORDER_COLOR) spine.set_linewidth(1.5) ax.set_xticks([]) ax.set_yticks([]) ax.set_facecolor('none') # --- Add date and title information to the top row --- ax_date = fig.add_subplot(gs[0, :]) ax_date.text(0.01, 0.5, f"{date_str} {title}", fontsize=12, color=DATE_COLOR, fontweight='bold', ha='left', va='center', transform=ax_date.transAxes) # Hide the border for the date cell for spine in ax_date.spines.values(): spine.set_visible(False) ax_date.set_xticks([]) ax_date.set_yticks([]) ax_date.set_facecolor('none') # Process both the PNG and PDF figures with the new layout process_figure(png_fig) process_figure(pdf_fig) # --- Save PNG --- png_buffer = io.BytesIO() # Use pad_inches=0 because we handled margins with subplots_adjust png_fig.savefig(png_buffer, format='png', pad_inches=0) png_buffer.seek(0) png_base64 = base64.b64encode(png_buffer.getvalue()).decode() plt.close(png_fig) # --- Save PDF --- pdf_buffer = io.BytesIO() with PdfPages(pdf_buffer) as pdf: # Use pad_inches=0 for PDF as well pdf.savefig(pdf_fig, pad_inches=0) pdf_buffer.seek(0) pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode() plt.close(pdf_fig) return { 'png': f'data:image/png;base64,{png_base64}', 'pdf': f'data:application/pdf;base64,{pdf_base64}' } # --- PDF display function --- def display_pdf(base64_pdf): """Embeds PDF in Streamlit for display""" pdf_display = f'' return pdf_display # Streamlit UI st.set_page_config(page_title="散厅时间快捷打印", layout="wide") st.title("散厅时间快捷打印") uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls"]) if uploaded_file: part1, part2, date_str = process_schedule(uploaded_file) if part1 is not None and part2 is not None: # Generate outputs containing both PNG and PDF data part1_output = create_print_layout(part1, "A", date_str) part2_output = create_print_layout(part2, "C", date_str) col1, col2 = st.columns(2) with col1: st.subheader("白班散场预览(时间 ≤ 17:30)") if part1_output: # Use tabs to show both PDF and PNG previews tab1_1, tab1_2 = st.tabs(["PDF 预览", "PNG 预览"]) with tab1_1: st.markdown(display_pdf(part1_output['pdf']), unsafe_allow_html=True) with tab1_2: st.image(part1_output['png']) else: st.info("白班部分没有数据") with col2: st.subheader("夜班散场预览(时间 > 17:30)") if part2_output: # Use tabs to show both PDF and PNG previews tab2_1, tab2_2 = st.tabs(["PDF 预览", "PNG 预览"]) with tab2_1: st.markdown(display_pdf(part2_output['pdf']), unsafe_allow_html=True) with tab2_2: st.image(part2_output['png']) else: st.info("夜班部分没有数据")