Spaces:
Running
Running
import pandas as pd | |
import streamlit as st | |
from datetime import datetime, timedelta | |
import matplotlib.pyplot as plt | |
import io | |
import base64 | |
import matplotlib.gridspec as gridspec | |
import math | |
SPLIT_TIME = "17:30" | |
BUSINESS_START = "09:30" | |
BUSINESS_END = "01:30" | |
BORDER_COLOR = '#A9A9A9' | |
DATE_COLOR = '#A9A9A9' | |
def process_schedule(file): | |
"""处理上传的 Excel 文件,生成排序和分组后的打印内容""" | |
try: | |
# 读取 Excel,跳过前 8 行 | |
df = pd.read_excel(file, skiprows=8) | |
# 提取所需列 (G9, H9, J9) | |
df = df.iloc[:, [6, 7, 9]] # G, H, J 列 | |
df.columns = ['Hall', 'StartTime', 'EndTime'] | |
# 清理数据 | |
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime']) | |
# 转换影厅格式为 "#号" 格式 | |
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + ' ' | |
# 保存原始时间字符串用于诊断 | |
df['original_end'] = df['EndTime'] | |
# 转换时间为 datetime 对象 | |
base_date = datetime.today().date() | |
df['StartTime'] = pd.to_datetime(df['StartTime']) | |
df['EndTime'] = pd.to_datetime(df['EndTime']) | |
# 设置基准时间 | |
business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M") | |
business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M") | |
# 处理跨天情况 | |
if business_end < business_start: | |
business_end += timedelta(days=1) | |
# 标准化所有时间到同一天 | |
for idx, row in df.iterrows(): | |
end_time = row['EndTime'] | |
if end_time.hour < 9: | |
df.at[idx, 'EndTime'] = end_time + timedelta(days=1) | |
if row['StartTime'].hour >= 21 and end_time.hour < 9: | |
df.at[idx, 'EndTime'] = end_time + timedelta(days=1) | |
# 筛选营业时间内的场次 | |
df['time_for_comparison'] = df['EndTime'].apply( | |
lambda x: datetime.combine(base_date, x.time()) | |
) | |
df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1) | |
valid_times = ( | |
((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) & | |
(df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time()))) | |
) | |
df = df[valid_times] | |
# 按散场时间排序 | |
df = df.sort_values('EndTime') | |
# 分割数据 | |
split_time = datetime.strptime(f"{base_date} {SPLIT_TIME}", "%Y-%m-%d %H:%M") | |
split_time_for_comparison = df['time_for_comparison'].apply( | |
lambda x: datetime.combine(base_date, split_time.time()) | |
) | |
part1 = df[df['time_for_comparison'] <= split_time_for_comparison].copy() | |
part2 = df[df['time_for_comparison'] > split_time_for_comparison].copy() | |
# 格式化时间显示 | |
for part in [part1, part2]: | |
part['EndTime'] = part['EndTime'].dt.strftime('%-I:%M') | |
# 关键修改:精确读取C6单元格 | |
date_df = pd.read_excel( | |
file, | |
skiprows=5, # 跳过前5行(0-4) | |
nrows=1, # 只读1行 | |
usecols=[2], # 第三列(C列) | |
header=None # 无表头 | |
) | |
date_cell = date_df.iloc[0, 0] | |
try: | |
# 处理不同日期格式 | |
if isinstance(date_cell, str): | |
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d') | |
else: | |
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d') | |
except: | |
date_str = datetime.today().strftime('%Y-%m-%d') | |
return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str | |
except Exception as e: | |
st.error(f"处理文件时出错: {str(e)}") | |
return None, None, None | |
def create_print_layout(data, title, date_str): | |
"""创建打印布局""" | |
if data.empty: | |
return None | |
# 设置 A5 纸张竖向尺寸 | |
fig = plt.figure(figsize=(5.83, 8.27), dpi=300) | |
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05) | |
# 设置字体 | |
plt.rcParams['font.family'] = 'sans-serif' | |
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] | |
# 计算行数和总数 | |
total_items = len(data) | |
num_cols = 3 | |
num_rows = math.ceil(total_items / num_cols) | |
# 创建网格 | |
gs = gridspec.GridSpec(num_rows + 1, num_cols, hspace=0.1, wspace=0.1, height_ratios=[1] * num_rows + [0.2]) | |
base_fontsize = min(30, 265 / num_rows) | |
data_values = data.values.tolist() | |
while len(data_values) % 3 != 0: | |
data_values.append(['', '']) | |
rows_per_col = math.ceil(len(data_values) / 3) | |
sorted_data = [['', '']] * len(data_values) | |
for i, item in enumerate(data_values): | |
if item[0] and item[1]: | |
row = i % rows_per_col | |
col = i // rows_per_col | |
new_index = row * 3 + col | |
if new_index < len(sorted_data): | |
sorted_data[new_index] = item | |
for idx, (hall, end_time) in enumerate(sorted_data): | |
if hall and end_time: | |
row = idx // 3 | |
col = idx % 3 | |
ax = plt.subplot(gs[row, col]) | |
for spine in ax.spines.values(): | |
spine.set_color(BORDER_COLOR) | |
spine.set_linewidth(0.5) | |
display_text = f"{hall}{end_time}" | |
ax.text(0.5, 0.5, display_text, | |
fontsize=base_fontsize, | |
fontweight='bold', | |
ha='center', | |
va='center') | |
ax.set_xlim(-0.02, 1.02) | |
ax.set_ylim(-0.02, 1.02) | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
# 添加日期信息 | |
ax_date = plt.subplot(gs[0, 0]) | |
ax_date.text(0.05, 0.95, f"{date_str} {title}", | |
fontsize=base_fontsize * 0.4, | |
color=DATE_COLOR, | |
fontweight='bold', | |
ha='left', | |
va='top') | |
for spine in ax_date.spines.values(): | |
spine.set_visible(False) | |
ax_date.set_xticks([]) | |
ax_date.set_yticks([]) | |
# 转换为图片 | |
buffer = io.BytesIO() | |
plt.savefig(buffer, format='png', bbox_inches='tight', pad_inches=0.05) | |
buffer.seek(0) | |
image_base64 = base64.b64encode(buffer.getvalue()).decode() | |
plt.close() | |
return f'data:image/png;base64,{image_base64}' | |
# Streamlit 界面 | |
st.set_page_config(page_title="散厅时间快捷打印", layout="wide") | |
st.title("散厅时间快捷打印") | |
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls", "xlsx"]) | |
if uploaded_file: | |
part1, part2, date_str = process_schedule(uploaded_file) | |
if part1 is not None and part2 is not None: | |
part1_image = create_print_layout(part1, "A", date_str) | |
part2_image = create_print_layout(part2, "C", date_str) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("白班散场预览(时间 ≤ 17:30)") | |
if part1_image: | |
st.image(part1_image) | |
else: | |
st.info("白班部分没有数据") | |
with col2: | |
st.subheader("夜班散场预览(时间 > 17:30)") | |
if part2_image: | |
st.image(part2_image) | |
else: | |
st.info("夜班部分没有数据") |