end-print / app.py
Ethscriptions's picture
Update app.py
18e6ab6 verified
raw
history blame
7.79 kB
import pandas as pd
import streamlit as st
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import io
import base64
import matplotlib.gridspec as gridspec
import math
SPLIT_TIME = "17:30"
BUSINESS_START = "09:30"
BUSINESS_END = "01:30"
BORDER_COLOR = '#A9A9A9'
DATE_COLOR = '#A9A9A9'
def process_schedule(file):
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
try:
# 读取 Excel,跳过前 8 行
df = pd.read_excel(file, skiprows=8)
# 提取所需列 (G9, H9, J9)
df = df.iloc[:, [6, 7, 9]] # G, H, J 列
df.columns = ['Hall', 'StartTime', 'EndTime']
# 清理数据
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
# 转换影厅格式为 "#号" 格式
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + ' '
# 保存原始时间字符串用于诊断
df['original_end'] = df['EndTime']
# 转换时间为 datetime 对象
base_date = datetime.today().date()
df['StartTime'] = pd.to_datetime(df['StartTime'])
df['EndTime'] = pd.to_datetime(df['EndTime'])
# 设置基准时间
business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M")
business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M")
# 处理跨天情况
if business_end < business_start:
business_end += timedelta(days=1)
# 标准化所有时间到同一天
for idx, row in df.iterrows():
end_time = row['EndTime']
if end_time.hour < 9:
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
if row['StartTime'].hour >= 21 and end_time.hour < 9:
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
# 筛选营业时间内的场次
df['time_for_comparison'] = df['EndTime'].apply(
lambda x: datetime.combine(base_date, x.time())
)
df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1)
valid_times = (
((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) &
(df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time())))
)
df = df[valid_times]
# 按散场时间排序
df = df.sort_values('EndTime')
# 分割数据
split_time = datetime.strptime(f"{base_date} {SPLIT_TIME}", "%Y-%m-%d %H:%M")
split_time_for_comparison = df['time_for_comparison'].apply(
lambda x: datetime.combine(base_date, split_time.time())
)
part1 = df[df['time_for_comparison'] <= split_time_for_comparison].copy()
part2 = df[df['time_for_comparison'] > split_time_for_comparison].copy()
# 格式化时间显示
for part in [part1, part2]:
part['EndTime'] = part['EndTime'].dt.strftime('%-I:%M')
# 关键修改:精确读取C6单元格
date_df = pd.read_excel(
file,
skiprows=5, # 跳过前5行(0-4)
nrows=1, # 只读1行
usecols=[2], # 第三列(C列)
header=None # 无表头
)
date_cell = date_df.iloc[0, 0]
try:
# 处理不同日期格式
if isinstance(date_cell, str):
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
else:
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
except:
date_str = datetime.today().strftime('%Y-%m-%d')
return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str
except Exception as e:
st.error(f"处理文件时出错: {str(e)}")
return None, None, None
def create_print_layout(data, title, date_str):
"""创建打印布局"""
if data.empty:
return None
# 设置 A5 纸张竖向尺寸
fig = plt.figure(figsize=(5.83, 8.27), dpi=300)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
# 设置字体
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']
# 计算行数和总数
total_items = len(data)
num_cols = 3
num_rows = math.ceil(total_items / num_cols)
# 创建网格
gs = gridspec.GridSpec(num_rows + 1, num_cols, hspace=0.1, wspace=0.1, height_ratios=[1] * num_rows + [0.2])
base_fontsize = min(30, 265 / num_rows)
data_values = data.values.tolist()
while len(data_values) % 3 != 0:
data_values.append(['', ''])
rows_per_col = math.ceil(len(data_values) / 3)
sorted_data = [['', '']] * len(data_values)
for i, item in enumerate(data_values):
if item[0] and item[1]:
row = i % rows_per_col
col = i // rows_per_col
new_index = row * 3 + col
if new_index < len(sorted_data):
sorted_data[new_index] = item
for idx, (hall, end_time) in enumerate(sorted_data):
if hall and end_time:
row = idx // 3
col = idx % 3
ax = plt.subplot(gs[row, col])
for spine in ax.spines.values():
spine.set_color(BORDER_COLOR)
spine.set_linewidth(0.5)
display_text = f"{hall}{end_time}"
ax.text(0.5, 0.5, display_text,
fontsize=base_fontsize,
fontweight='bold',
ha='center',
va='center')
ax.set_xlim(-0.02, 1.02)
ax.set_ylim(-0.02, 1.02)
ax.set_xticks([])
ax.set_yticks([])
# 添加日期信息
ax_date = plt.subplot(gs[0, 0])
ax_date.text(0.05, 0.95, f"{date_str} {title}",
fontsize=base_fontsize * 0.4,
color=DATE_COLOR,
fontweight='bold',
ha='left',
va='top')
for spine in ax_date.spines.values():
spine.set_visible(False)
ax_date.set_xticks([])
ax_date.set_yticks([])
# 转换为图片
buffer = io.BytesIO()
plt.savefig(buffer, format='png', bbox_inches='tight', pad_inches=0.05)
buffer.seek(0)
image_base64 = base64.b64encode(buffer.getvalue()).decode()
plt.close()
return f'data:image/png;base64,{image_base64}'
# Streamlit 界面
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
st.title("散厅时间快捷打印")
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls", "xlsx"])
if uploaded_file:
part1, part2, date_str = process_schedule(uploaded_file)
if part1 is not None and part2 is not None:
part1_image = create_print_layout(part1, "A", date_str)
part2_image = create_print_layout(part2, "C", date_str)
col1, col2 = st.columns(2)
with col1:
st.subheader("白班散场预览(时间 ≤ 17:30)")
if part1_image:
st.image(part1_image)
else:
st.info("白班部分没有数据")
with col2:
st.subheader("夜班散场预览(时间 > 17:30)")
if part2_image:
st.image(part2_image)
else:
st.info("夜班部分没有数据")