Spaces:
Sleeping
Sleeping
File size: 45,098 Bytes
f25e634 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "JUwKXagI8Vkj",
"outputId": "c9f6a127-a95e-48d4-d0d8-3725f62cca12"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Predicted Disease: Fungal infection\n"
]
}
],
"source": [
"import xgboost as xgb\n",
"import pickle\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"# Load the trained model\n",
"model = xgb.XGBClassifier()\n",
"model.load_model(\"symptom_disease_model.json\")\n",
"\n",
"# Load the label encoder\n",
"label_encoder = pickle.load(open(\"label_encoder.pkl\", \"rb\"))\n",
"\n",
"# Load symptom names (from preprocessed training data)\n",
"X_train = pd.read_csv(\"X_train.csv\") # Get feature names\n",
"symptom_list = X_train.columns.tolist()\n",
"\n",
"# Function to Predict Disease\n",
"def predict_disease(user_symptoms):\n",
" # Convert user symptoms into one-hot encoded format\n",
" input_vector = np.zeros(len(symptom_list))\n",
"\n",
" for symptom in user_symptoms:\n",
" if symptom in symptom_list:\n",
" input_vector[symptom_list.index(symptom)] = 1\n",
"\n",
" input_vector = input_vector.reshape(1, -1) # Reshape for model\n",
"\n",
" # Predict disease (returns a numerical class)\n",
" predicted_class = model.predict(input_vector)[0]\n",
"\n",
" # Convert number to disease name\n",
" predicted_disease = label_encoder.inverse_transform([predicted_class])[0]\n",
"\n",
" return predicted_disease\n",
"\n",
"# Example Usage\n",
"user_symptoms = [\"itching\", \"skin_rash\", \"nodal_skin_eruptions\"]\n",
"predicted_disease = predict_disease(user_symptoms)\n",
"print(f\"Predicted Disease: {predicted_disease}\")\n"
]
},
{
"cell_type": "code",
"source": [
"!pip install zipfile36\n",
"import sys\n",
"if sys.version_info >= (3, 6):\n",
" import zipfile\n",
"else:\n",
" import zipfile36 as zipfile\n",
"import os\n",
"\n",
"zip_file_path = '/content/disease symptom.zip' # Update with your path\n",
"extracted_dir = '/content' # Where to extract the files\n",
"\n",
"with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:\n",
" zip_ref.extractall(extracted_dir)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "_cmO1ieS8rcS",
"outputId": "51db88e4-f9a6-4404-be06-a161afb80c29"
},
"execution_count": 2,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Collecting zipfile36\n",
" Downloading zipfile36-0.1.3-py3-none-any.whl.metadata (736 bytes)\n",
"Downloading zipfile36-0.1.3-py3-none-any.whl (20 kB)\n",
"Installing collected packages: zipfile36\n",
"Successfully installed zipfile36-0.1.3\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Load the precaution dataset\n",
"precaution_df = pd.read_csv(\"Disease precaution.csv\")\n",
"\n",
"# Convert to dictionary for fast lookup\n",
"precaution_dict = {}\n",
"for _, row in precaution_df.iterrows():\n",
" disease = row[\"Disease\"].strip().lower()\n",
" precautions = [row[f\"Precaution_{i}\"] for i in range(1, 5) if pd.notna(row[f\"Precaution_{i}\"])]\n",
" precaution_dict[disease] = precautions\n",
"\n",
"# Function to Get Precautions\n",
"def get_precautions(disease_name):\n",
" disease_name = disease_name.strip().lower()\n",
" return precaution_dict.get(disease_name, [\"No precautions found\"])\n",
"\n",
"# Example Usage\n",
"precautions = get_precautions(predicted_disease)\n",
"print(f\"Precautions for {predicted_disease}: {precautions}\")\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Q-by1c_x8lqq",
"outputId": "19461912-49d0-48e4-9d9a-2b7e535df0e0"
},
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Precautions for Fungal infection: ['bath twice', 'use detol or neem in bathing water', 'keep infected area dry', 'use clean cloths']\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"!pip install nltk"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Z9dYwI-Cjzz3",
"outputId": "1564c447-3876-4979-9c6c-44832e5ab1b7"
},
"execution_count": 80,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Requirement already satisfied: nltk in /usr/local/lib/python3.11/dist-packages (3.9.1)\n",
"Requirement already satisfied: click in /usr/local/lib/python3.11/dist-packages (from nltk) (8.1.8)\n",
"Requirement already satisfied: joblib in /usr/local/lib/python3.11/dist-packages (from nltk) (1.4.2)\n",
"Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.11/dist-packages (from nltk) (2024.11.6)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from nltk) (4.67.1)\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import re\n",
"import nltk\n",
"from nltk.corpus import stopwords\n",
"from nltk.tokenize import word_tokenize\n",
"\n",
"# Download stopwords if not already downloaded\n",
"nltk.download(\"stopwords\")\n",
"nltk.download(\"punkt\")\n",
"\n",
"# Load English stopwords\n",
"stop_words = set(stopwords.words(\"english\"))\n",
"nltk.download('punkt_tab')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "BbkxCwC3j766",
"outputId": "318849f5-8596-44ac-878e-91e154ef5e2d"
},
"execution_count": 83,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"[nltk_data] Downloading package stopwords to /root/nltk_data...\n",
"[nltk_data] Package stopwords is already up-to-date!\n",
"[nltk_data] Downloading package punkt to /root/nltk_data...\n",
"[nltk_data] Package punkt is already up-to-date!\n",
"[nltk_data] Downloading package punkt_tab to /root/nltk_data...\n",
"[nltk_data] Unzipping tokenizers/punkt_tab.zip.\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"True"
]
},
"metadata": {},
"execution_count": 83
}
]
},
{
"cell_type": "code",
"source": [
"import xgboost as xgb\n",
"import pickle\n",
"import numpy as np\n",
"import pandas as pd\n",
"import torch\n",
"from transformers import AutoTokenizer, AutoModelForQuestionAnswering\n",
"import re # Import regex module for better input processing\n",
"\n",
"# ============================\n",
"# πΉ 1. Load Pretrained Medical Q&A Model\n",
"# ============================\n",
"qa_model_name = \"deepset/roberta-base-squad2\" # Better model for medical Q&A\n",
"tokenizer = AutoTokenizer.from_pretrained(qa_model_name)\n",
"qa_model = AutoModelForQuestionAnswering.from_pretrained(qa_model_name)\n",
"\n",
"# ============================\n",
"# πΉ 2. Load Symptom Checker Model & Label Encoder (Fixed)\n",
"# ============================\n",
"# Load trained XGBoost model from JSON\n",
"model = xgb.XGBClassifier()\n",
"model.load_model(\"symptom_disease_model.json\")\n",
"common_symptoms = [\"fever\", \"cough\", \"headache\", \"pain\", \"vomiting\", \"fatigue\", \"nausea\", \"rash\", \"chills\", \"dizziness\", \"sore throat\", \"diarrhea\"]\n",
"\n",
"# Load Corrected Label Encoder\n",
"label_encoder = pickle.load(open(\"label_encoder.pkl\", \"rb\"))\n",
"\n",
"# Load symptom names from training data\n",
"X_train = pd.read_csv(\"X_train.csv\") # Get feature names\n",
"symptom_list = X_train.columns.tolist()\n",
"\n",
"# ============================\n",
"# πΉ 3. Load Precaution Data\n",
"# ============================\n",
"precaution_df = pd.read_csv(\"Disease precaution.csv\")\n",
"precaution_dict = {\n",
" row[\"Disease\"].strip().lower(): [row[f\"Precaution_{i}\"] for i in range(1, 5) if pd.notna(row[f\"Precaution_{i}\"])]\n",
" for _, row in precaution_df.iterrows()\n",
"}\n",
"\n",
"# ============================\n",
"# πΉ 4. Load Medical Context\n",
"# ============================\n",
"def load_medical_context():\n",
" with open(\"medical_context.txt\", \"r\", encoding=\"utf-8\") as file:\n",
" return file.read()\n",
"\n",
"medical_context = load_medical_context()\n",
"\n",
"# ============================\n",
"# πΉ 5. Doctor Database (For Appointments)\n",
"# ============================\n",
"doctor_database = {\n",
" \"malaria\": [{\"name\": \"Dr. Rajesh Kumar\", \"specialty\": \"Infectious Diseases\", \"location\": \"Apollo Hospital\", \"contact\": \"9876543210\"}],\n",
" \"diabetes\": [{\"name\": \"Dr. Anil Mehta\", \"specialty\": \"Endocrinologist\", \"location\": \"AIIMS Delhi\", \"contact\": \"9876543233\"}],\n",
" \"heart attack\": [{\"name\": \"Dr. Vikram Singh\", \"specialty\": \"Cardiologist\", \"location\": \"Medanta Hospital\", \"contact\": \"9876543255\"}],\n",
" \"hepatitis e\": [{\"name\": \"Dr. Sunil Agarwal\", \"specialty\": \"Hepatologist\", \"location\": \"Fortis Hospital\", \"contact\": \"9876543266\"}],\n",
" \"pneumonia\": [{\"name\": \"Dr. Priya Sharma\", \"specialty\": \"Pulmonologist\", \"location\": \"Max Healthcare\", \"contact\": \"9876543277\"}],\n",
" \"heartattack\": [{\"name\": \"Dr. Vikram Singh\", \"specialty\": \"Cardiologist\", \"location\": \"Medanta Hospital\", \"contact\": \"9876543255\"}],\n",
"}\n",
"\n",
"# ============================\n",
"# πΉ 6. Predict Disease from Symptoms (Fully Fixed)\n",
"# ============================\n",
"def predict_disease(user_symptoms):\n",
" \"\"\"Predicts the disease based on user symptoms using the trained XGBoost model.\"\"\"\n",
" input_vector = np.zeros(len(symptom_list))\n",
"\n",
" for symptom in user_symptoms:\n",
" if symptom in symptom_list:\n",
" input_vector[symptom_list.index(symptom)] = 1 # One-hot encoding\n",
"\n",
" input_vector = input_vector.reshape(1, -1) # Reshape for model input\n",
"\n",
" # Predict disease (returns a numerical class)\n",
" predicted_class = model.predict(input_vector)[0]\n",
"\n",
" # Convert number to disease name\n",
" predicted_disease = label_encoder.inverse_transform([predicted_class])[0]\n",
"\n",
" return predicted_disease\n",
"\n",
"# ============================\n",
"# πΉ 7. Get Precautions for a Disease\n",
"# ============================\n",
"def get_precautions(disease):\n",
" \"\"\"Returns the precautions for a given disease.\"\"\"\n",
" return precaution_dict.get(disease.lower(), [\"No precautions available\"])\n",
"\n",
"# ============================\n",
"# πΉ 8. Answer Medical Questions (Q&A Model)\n",
"# ============================\n",
"def get_medical_answer(question):\n",
" \"\"\"Uses the pre-trained Q&A model to answer general medical questions.\"\"\"\n",
" inputs = tokenizer(question, medical_context, return_tensors=\"pt\", truncation=True, max_length=512)\n",
" with torch.no_grad():\n",
" outputs = qa_model(**inputs)\n",
"\n",
" answer_start = torch.argmax(outputs.start_logits)\n",
" answer_end = torch.argmax(outputs.end_logits) + 1\n",
"\n",
" answer = tokenizer.convert_tokens_to_string(\n",
" tokenizer.convert_ids_to_tokens(inputs[\"input_ids\"][0][answer_start:answer_end])\n",
" )\n",
"\n",
" return answer if answer.strip() and answer != \"[CLS]\" else \"No reliable answer found.\"\n",
"\n",
"# ============================\n",
"# πΉ 9. Book a Doctor's Appointment\n",
"# ============================\n",
"def book_appointment(disease):\n",
" \"\"\"Finds a doctor for the given disease and returns appointment details.\"\"\"\n",
" disease = disease.lower().strip()\n",
" doctors = doctor_database.get(disease, [])\n",
" if not doctors:\n",
" return f\"Sorry, no available doctors found for {disease}.\"\n",
"\n",
" doctor = doctors[0]\n",
" return f\"Appointment booked with **{doctor['name']}** ({doctor['specialty']}) at **{doctor['location']}**.\\nContact: {doctor['contact']}\"\n",
"\n",
"# ============================\n",
"# πΉ 10. Handle User Queries\n",
"# ============================\n",
"def extract_treatment_from_context(disease):\n",
" \"\"\"Extracts treatment details for a given disease from `medical_context.txt`.\"\"\"\n",
" with open(\"medical_context.txt\", \"r\", encoding=\"utf-8\") as file:\n",
" lines = file.readlines()\n",
"\n",
" treatment_section = []\n",
" found_disease = False\n",
" found_treatment = False\n",
"\n",
" for line in lines:\n",
" line = line.strip()\n",
"\n",
" # Check if we found the disease name\n",
" if f\"## {disease.lower()}\" in line.lower():\n",
" found_disease = True\n",
"\n",
" # If we found the disease, now look for \"Treatment\"\n",
" if found_disease and \"**Treatment**\" in line:\n",
" found_treatment = True\n",
" continue # Skip the \"**Treatment**:\" line itself\n",
"\n",
" # If found, keep extracting treatment details\n",
" if found_treatment:\n",
" # Stop at blank line or the next section (## New Disease Name)\n",
" if line == \"\" or line.startswith(\"## \"):\n",
" break\n",
" treatment_section.append(line)\n",
"\n",
" return \"\\n\".join(treatment_section) if treatment_section else None\n",
"\n",
"\n",
"def extract_disease_name(user_query):\n",
" \"\"\"Extracts the disease name by removing unnecessary words, but keeps medical terms.\"\"\"\n",
" user_query_cleaned = re.sub(r\"[^\\w\\s]\", \"\", user_query.lower()) # Remove punctuation\n",
" words = word_tokenize(user_query_cleaned)\n",
"\n",
" # Remove stopwords but keep diseases/symptoms\n",
" filtered_words = [word for word in words if word not in stop_words or word in common_symptoms]\n",
"\n",
" return \" \".join(filtered_words).strip()\n",
"\n",
"def find_best_match(query, database):\n",
" \"\"\"Finds the best matching disease from the database based on query words.\"\"\"\n",
" query_words = query.split() # Split query into words\n",
"\n",
" # Check for exact match first\n",
" if query in database:\n",
" return query # Exact match found\n",
"\n",
" # Check if any word in query exists in database keys\n",
" for disease in database:\n",
" for word in query_words:\n",
" if word in disease: # Partial match found\n",
" return disease\n",
"\n",
" return None # No match found\n",
"\n",
"\n",
"def handle_user_query(user_query):\n",
" \"\"\"Handles user queries related to symptoms, diseases, and doctor appointments.\"\"\"\n",
"\n",
" user_query = user_query.lower().strip()\n",
"\n",
" # Skip Cleaning for \"I have...\" and \"experiencing...\" Cases\n",
" if \"i have\" in user_query or \"experiencing\" in user_query:\n",
" symptoms = user_query.replace(\"I have\", \"\").replace(\"experiencing\", \"\").strip()\n",
" disease = predict_disease(symptoms.split(\", \")) # Convert to list\n",
" precautions = get_precautions(disease)\n",
" return f\"**Predicted Disease:** {disease}\\n**Precautions:** {', '.join(precautions)}\\n{book_appointment(disease)}\"\n",
"\n",
" # Extract Disease Name for Queries\n",
" user_query_cleaned = extract_disease_name(user_query)\n",
"\n",
" # Handle \"Who should I see for...\" Queries (Improved with Partial Matching)\n",
" if \"who should i see \" in user_query:\n",
" disease_query = user_query.replace(\"who should i see\", \"\").strip()\n",
" disease = find_best_match(disease_query, doctor_database) # Get best match\n",
"\n",
" if disease:\n",
" doctor = doctor_database[disease][0]\n",
" return f\"You should see a **{doctor['specialty']}** for {disease}.\\nExample: {doctor['name']} at {doctor['location']}.\"\n",
" else:\n",
" return \"I'm not sure. Please consult a general physician for more guidance.\"\n",
"\n",
" # Book Appointment (Improved with Partial Matching)\n",
" elif \"book appointment\" in user_query_cleaned:\n",
" disease_query = user_query_cleaned.replace(\"book appointment\", \"\").strip()\n",
" disease = find_best_match(disease_query, doctor_database)\n",
" return book_appointment(disease) if disease else \"Sorry, no matching doctor found.\"\n",
"\n",
" # Symptoms Query\n",
" elif \"symptoms\" in user_query_cleaned or \"signs\" in user_query_cleaned:\n",
" disease = user_query_cleaned.replace(\"symptoms\", \"\").replace(\"signs\", \"\").strip()\n",
" return get_medical_answer(f\"What are the symptoms of {disease}?\")\n",
"\n",
" # Precautions Query\n",
" elif \"precautions\" in user_query_cleaned or \"prevent\" in user_query_cleaned:\n",
" disease = user_query_cleaned.replace(\"precautions\", \"\").replace(\"prevent\", \"\").strip()\n",
" return \", \".join(get_precautions(disease))\n",
"\n",
" # Treatment Query\n",
" if \"treatment\" in user_query_cleaned or \"treat\" in user_query_cleaned:\n",
" disease = user_query_cleaned.replace(\"treatment\", \"\").replace(\"treat\", \"\").strip()\n",
"\n",
" # πΉ First, try to extract treatment from `medical_context.txt`\n",
" treatment_answer = extract_treatment_from_context(disease)\n",
" if treatment_answer:\n",
" return treatment_answer # Use direct extraction first\n",
"\n",
" # πΉ If no treatment info found, use the Q&A Model\n",
" model_answer = get_medical_answer(f\"What is the treatment for {disease}?\")\n",
" if model_answer in [\"<s>\", \"\", \"No reliable answer found.\"]:\n",
" return f\"I'm not sure, but common treatments for {disease} include medication, therapy, or consulting a specialist.\"\n",
" return model_answer\n",
"\n",
" # General Medical Questions (Fallback)\n",
" else:\n",
" response = get_medical_answer(user_query)\n",
" if response in [\"<s>\", \"\", \"No reliable answer found.\"]:\n",
" return \"I'm not sure, but you may consult a specialist for better guidance.\"\n",
" return response\n",
"\n",
"# ============================\n",
"# πΉ 11. Test Cases (Run Examples)\n",
"# ============================\n",
"print(handle_user_query(\"I have fever, chills, and muscle aches\")) # Should predict disease & precautions\n",
"print(handle_user_query(\"What are the symptoms of pneumonia?\")) # Should return pneumonia symptoms\n",
"print(handle_user_query(\"Book an appointment for diabetes\")) # Should book a diabetes specialist\n",
"print(handle_user_query(\"Who should I see for heart attack\")) # Should return \"Cardiologist\"\n",
"print(handle_user_query(\"what is the treatment for tuberculosis\")) # Should return correct treatment\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ccAK0hD9WcZy",
"outputId": "d36ea7da-1ca1-4de0-e39a-9ad35a0a0b31"
},
"execution_count": 110,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"**Predicted Disease:** Hepatitis E\n",
"**Precautions:** stop alcohol consumption, rest, consult doctor, medication\n",
"Appointment booked with **Dr. Sunil Agarwal** (Hepatologist) at **Fortis Hospital**.\n",
"Contact: 9876543266\n",
" Fever, cough, chest pain, difficulty breathing\n",
"Appointment booked with **Dr. Anil Mehta** (Endocrinologist) at **AIIMS Delhi**.\n",
"Contact: 9876543233\n",
"You should see a **Cardiologist** for heart attack.\n",
"Example: Dr. Vikram Singh at Medanta Hospital.\n",
"- **Doctor to consult**: Infectious Disease Specialist\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(handle_user_query(\"What is the treatment for tuberculosis?\")) # Should return correct treatment\n",
"print(handle_user_query(\"What is the treatment for malaria?\")) # Should also work\n",
"print(handle_user_query(\"What is the treatment for cancer?\")) # Should return something useful"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ybyh64xuq1ih",
"outputId": "4bc9e030-8a3a-469d-d5b3-9d0e8aec6367"
},
"execution_count": 111,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"- **Doctor to consult**: Infectious Disease Specialist\n",
"I'm not sure, but common treatments for malaria include medication, therapy, or consulting a specialist.\n",
"- **Doctor to consult**: Oncologist\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(handle_user_query(\"What is the treatment for tuberculosis?\")) # Should return correct treatment\n",
"print(handle_user_query(\"What is the treatment for malaria?\")) # Should also work\n",
"print(handle_user_query(\"What is the treatment for cancer?\")) # Should return something useful\n",
"print(handle_user_query(\"How to treat diabetes?\")) # Should return proper treatment\n",
"print(handle_user_query(\"Tell me the cure for pneumonia?\")) # Should return treatment\n",
"print(handle_user_query(\"Treatment for typhoid?\")) # Should extract treatment\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6DQ8XH11gwGZ",
"outputId": "5a8cbacc-05d5-4c9e-cb4c-6b93666971b2"
},
"execution_count": 112,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"- **Doctor to consult**: Infectious Disease Specialist\n",
"I'm not sure, but common treatments for malaria include medication, therapy, or consulting a specialist.\n",
"- **Doctor to consult**: Oncologist\n",
"I'm not sure, but common treatments for diabetes include medication, therapy, or consulting a specialist.\n",
"I'm not sure, but you may consult a specialist for better guidance.\n",
"I'm not sure, but common treatments for typhoid include medication, therapy, or consulting a specialist.\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(handle_user_query(\"What are the symptoms of pneumonia?\")) # Should return correct symptoms\n",
"print(handle_user_query(\"Signs of heart attack?\")) # Should return expected symptoms\n",
"print(handle_user_query(\"How do I know if I have typhoid?\")) # Should return typhoid symptoms\n",
"print(handle_user_query(\"What symptoms should I check for tuberculosis?\")) # Should work\n",
"print(handle_user_query(\"Symptoms of dengue?\")) # Should return symptoms of dengue\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Oq1xVi93u0nN",
"outputId": "9fd0433b-aad4-4246-bb3d-5cc8c23995e1"
},
"execution_count": 113,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" Fever, cough, chest pain, difficulty breathing\n",
" Chest pain, shortness of breath, nausea, pain in the left arm\n",
"**Predicted Disease:** Hepatitis E\n",
"**Precautions:** stop alcohol consumption, rest, consult doctor, medication\n",
"Appointment booked with **Dr. Sunil Agarwal** (Hepatologist) at **Fortis Hospital**.\n",
"Contact: 9876543266\n",
"<s>\n",
"<s>\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(handle_user_query(\"Who should I see for a heart attack?\")) # Should return \"Cardiologist\"\n",
"print(handle_user_query(\"Which doctor should I visit for diabetes?\")) # Should return \"Endocrinologist\"\n",
"print(handle_user_query(\"Who should I consult for a skin rash?\")) # Should return \"Dermatologist\"\n",
"print(handle_user_query(\"What kind of doctor treats pneumonia?\")) # Should return \"Pulmonologist\"\n",
"print(handle_user_query(\"Who specializes in treating migraines?\")) # Should return \"Neurologist\"\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8IyTjf6Ku1r2",
"outputId": "4776d477-59fc-4d0a-8bd6-c6c97c2fdaf7"
},
"execution_count": 114,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"You should see a **Infectious Diseases** for malaria.\n",
"Example: Dr. Rajesh Kumar at Apollo Hospital.\n",
"I'm not sure, but you may consult a specialist for better guidance.\n",
"I'm not sure, but you may consult a specialist for better guidance.\n",
"I'm not sure, but common treatments for kind doctor s pneumonia include medication, therapy, or consulting a specialist.\n",
"I'm not sure, but common treatments for specializes ing migraines include medication, therapy, or consulting a specialist.\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(handle_user_query(\"Book an appointment for malaria\")) # Should book doctor for malaria\n",
"print(handle_user_query(\"I need a doctor for high blood pressure\")) # Should book doctor for hypertension\n",
"print(handle_user_query(\"Schedule a consultation for fever\")) # Should book general physician\n",
"print(handle_user_query(\"Find a doctor for diabetes treatment\")) # Should book endocrinologist\n",
"print(handle_user_query(\"Book an appointment for pneumonia treatment\")) # Should book pulmonologist\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "RgbA5722u4Bk",
"outputId": "ea5b0b8d-6194-49c2-8e6b-311c06d0cad2"
},
"execution_count": 115,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Appointment booked with **Dr. Rajesh Kumar** (Infectious Diseases) at **Apollo Hospital**.\n",
"Contact: 9876543210\n",
"I'm not sure, but you may consult a specialist for better guidance.\n",
"I'm not sure, but you may consult a specialist for better guidance.\n",
"I'm not sure, but common treatments for find doctor diabetes include medication, therapy, or consulting a specialist.\n",
"Appointment booked with **Dr. Priya Sharma** (Pulmonologist) at **Max Healthcare**.\n",
"Contact: 9876543277\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(handle_user_query(\"I have fever, cough, and chills\")) # Should predict disease correctly\n",
"print(handle_user_query(\"Experiencing blurry vision and excessive thirst\")) # Should return \"Diabetes\"\n",
"print(handle_user_query(\"I am experiencing severe chest pain and difficulty breathing\")) # Should return \"Heart Attack\"\n",
"print(handle_user_query(\"Feeling tired, cold, and gaining weight\")) # Should return \"Hypothyroidism\"\n",
"print(handle_user_query(\"I have rash, joint pain, and headache\")) # Should return \"Dengue\"\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "9zhwGv6gu5yc",
"outputId": "17cff133-5c44-417a-bc37-4858a72084fd"
},
"execution_count": 116,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"**Predicted Disease:** Hepatitis E\n",
"**Precautions:** stop alcohol consumption, rest, consult doctor, medication\n",
"Appointment booked with **Dr. Sunil Agarwal** (Hepatologist) at **Fortis Hospital**.\n",
"Contact: 9876543266\n",
"**Predicted Disease:** Hepatitis E\n",
"**Precautions:** stop alcohol consumption, rest, consult doctor, medication\n",
"Appointment booked with **Dr. Sunil Agarwal** (Hepatologist) at **Fortis Hospital**.\n",
"Contact: 9876543266\n",
"**Predicted Disease:** Hepatitis E\n",
"**Precautions:** stop alcohol consumption, rest, consult doctor, medication\n",
"Appointment booked with **Dr. Sunil Agarwal** (Hepatologist) at **Fortis Hospital**.\n",
"Contact: 9876543266\n",
"I'm not sure, but you may consult a specialist for better guidance.\n",
"**Predicted Disease:** Hepatitis E\n",
"**Precautions:** stop alcohol consumption, rest, consult doctor, medication\n",
"Appointment booked with **Dr. Sunil Agarwal** (Hepatologist) at **Fortis Hospital**.\n",
"Contact: 9876543266\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(handle_user_query(\"What does a doctor do?\")) # Should return general doctor description\n",
"print(handle_user_query(\"What are antibiotics?\")) # Should explain antibiotics\n",
"print(handle_user_query(\"How does the immune system work?\")) # Should explain immunity\n",
"print(handle_user_query(\"What is the function of the liver?\")) # Should explain liver function\n",
"print(handle_user_query(\"Explain how blood pressure works?\")) # Should provide useful explanation\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "f1_Tt8y3u8wB",
"outputId": "6b1104ee-32cb-42fd-95ed-894824a49e33"
},
"execution_count": 118,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"I'm not sure, but you may consult a specialist for better guidance.\n",
"bacterial pneumonia\n",
"I'm not sure, but you may consult a specialist for better guidance.\n",
"I'm not sure, but you may consult a specialist for better guidance.\n",
"I'm not sure, but you may consult a specialist for better guidance.\n"
]
}
]
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "hh7-xCtRu-NH"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"!pip install streamlit\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "lj6ZVPRqwKqG",
"outputId": "55936a43-a429-4630-bbac-60fa63fa399a"
},
"execution_count": 128,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Collecting streamlit\n",
" Downloading streamlit-1.43.1-py2.py3-none-any.whl.metadata (8.9 kB)\n",
"Requirement already satisfied: altair<6,>=4.0 in /usr/local/lib/python3.11/dist-packages (from streamlit) (5.5.0)\n",
"Requirement already satisfied: blinker<2,>=1.0.0 in /usr/local/lib/python3.11/dist-packages (from streamlit) (1.9.0)\n",
"Requirement already satisfied: cachetools<6,>=4.0 in /usr/local/lib/python3.11/dist-packages (from streamlit) (5.5.2)\n",
"Requirement already satisfied: click<9,>=7.0 in /usr/local/lib/python3.11/dist-packages (from streamlit) (8.1.8)\n",
"Requirement already satisfied: numpy<3,>=1.23 in /usr/local/lib/python3.11/dist-packages (from streamlit) (1.26.4)\n",
"Requirement already satisfied: packaging<25,>=20 in /usr/local/lib/python3.11/dist-packages (from streamlit) (24.2)\n",
"Requirement already satisfied: pandas<3,>=1.4.0 in /usr/local/lib/python3.11/dist-packages (from streamlit) (2.2.2)\n",
"Requirement already satisfied: pillow<12,>=7.1.0 in /usr/local/lib/python3.11/dist-packages (from streamlit) (11.1.0)\n",
"Requirement already satisfied: protobuf<6,>=3.20 in /usr/local/lib/python3.11/dist-packages (from streamlit) (4.25.6)\n",
"Requirement already satisfied: pyarrow>=7.0 in /usr/local/lib/python3.11/dist-packages (from streamlit) (18.1.0)\n",
"Requirement already satisfied: requests<3,>=2.27 in /usr/local/lib/python3.11/dist-packages (from streamlit) (2.32.3)\n",
"Requirement already satisfied: tenacity<10,>=8.1.0 in /usr/local/lib/python3.11/dist-packages (from streamlit) (9.0.0)\n",
"Requirement already satisfied: toml<2,>=0.10.1 in /usr/local/lib/python3.11/dist-packages (from streamlit) (0.10.2)\n",
"Requirement already satisfied: typing-extensions<5,>=4.4.0 in /usr/local/lib/python3.11/dist-packages (from streamlit) (4.12.2)\n",
"Collecting watchdog<7,>=2.1.5 (from streamlit)\n",
" Downloading watchdog-6.0.0-py3-none-manylinux2014_x86_64.whl.metadata (44 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m44.3/44.3 kB\u001b[0m \u001b[31m2.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: gitpython!=3.1.19,<4,>=3.0.7 in /usr/local/lib/python3.11/dist-packages (from streamlit) (3.1.44)\n",
"Collecting pydeck<1,>=0.8.0b4 (from streamlit)\n",
" Downloading pydeck-0.9.1-py2.py3-none-any.whl.metadata (4.1 kB)\n",
"Requirement already satisfied: tornado<7,>=6.0.3 in /usr/local/lib/python3.11/dist-packages (from streamlit) (6.4.2)\n",
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from altair<6,>=4.0->streamlit) (3.1.5)\n",
"Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.11/dist-packages (from altair<6,>=4.0->streamlit) (4.23.0)\n",
"Requirement already satisfied: narwhals>=1.14.2 in /usr/local/lib/python3.11/dist-packages (from altair<6,>=4.0->streamlit) (1.29.0)\n",
"Requirement already satisfied: gitdb<5,>=4.0.1 in /usr/local/lib/python3.11/dist-packages (from gitpython!=3.1.19,<4,>=3.0.7->streamlit) (4.0.12)\n",
"Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas<3,>=1.4.0->streamlit) (2.8.2)\n",
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas<3,>=1.4.0->streamlit) (2025.1)\n",
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas<3,>=1.4.0->streamlit) (2025.1)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.27->streamlit) (3.4.1)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.27->streamlit) (3.10)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.27->streamlit) (2.3.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.27->streamlit) (2025.1.31)\n",
"Requirement already satisfied: smmap<6,>=3.0.1 in /usr/local/lib/python3.11/dist-packages (from gitdb<5,>=4.0.1->gitpython!=3.1.19,<4,>=3.0.7->streamlit) (5.0.2)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->altair<6,>=4.0->streamlit) (3.0.2)\n",
"Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.11/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit) (25.1.0)\n",
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.11/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit) (2024.10.1)\n",
"Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.11/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit) (0.36.2)\n",
"Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.11/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit) (0.23.1)\n",
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas<3,>=1.4.0->streamlit) (1.17.0)\n",
"Downloading streamlit-1.43.1-py2.py3-none-any.whl (9.7 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m9.7/9.7 MB\u001b[0m \u001b[31m50.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading pydeck-0.9.1-py2.py3-none-any.whl (6.9 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m6.9/6.9 MB\u001b[0m \u001b[31m57.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading watchdog-6.0.0-py3-none-manylinux2014_x86_64.whl (79 kB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m79.1/79.1 kB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hInstalling collected packages: watchdog, pydeck, streamlit\n",
"Successfully installed pydeck-0.9.1 streamlit-1.43.1 watchdog-6.0.0\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"%%writefile app.py\n",
"import streamlit as st\n",
"import requests\n",
"\n",
"st.set_page_config(page_title=\"AI Health Assistant\", page_icon=\"π€\")\n",
"\n",
"st.title(\"π©Ί AI Health Assistant\")\n",
"st.write(\"Ask any medical-related questions:\")\n",
"\n",
"# User Input\n",
"user_input = st.text_input(\"Your Question:\")\n",
"\n",
"# Button to Send Query\n",
"if st.button(\"Ask\"):\n",
" response = requests.post(\"https://b7da-35-232-247-117.ngrok-free.app/query/\", json={\"user_input\": user_input})\n",
" bot_response = response.json().get(\"response\", \"Error fetching response\")\n",
"\n",
" st.markdown(f\"**π€ Bot:** {bot_response}\")\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "EDgP-RoV1hxA",
"outputId": "57a5b4a3-846a-46fc-eb8b-c1c240132284"
},
"execution_count": 132,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Writing app.py\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"β
Steps to Deploy on Hugging Face Spaces\n",
"π Step 1: Create a Hugging Face Space\n",
"1οΈβ£ Go to Hugging Face Spaces\n",
"2οΈβ£ Click \"New Space\"\n",
"3οΈβ£ Name the Space (e.g., AI-Health-Assistant)\n",
"4οΈβ£ Select \"Streamlit\" as the SDK\n",
"5οΈβ£ Click \"Create Space\" β
\n",
"\n",
"π Step 2: Clone the Repository Locally\n",
"After creating the Space, clone it to your local machine or Google Colab:\n",
"\n",
"```bash\n",
"git clone https://huggingface.co/spaces/YOUR_USERNAME/AI-Health-Assistant\n",
"cd AI-Health-Assistant\n",
"```\n",
"Replace YOUR_USERNAME with your Hugging Face username!\n",
"\n",
"π Step 3: Add app.py (Your Streamlit Chatbot)\n",
"Inside the cloned folder, create app.py and paste the following:\n",
"\n",
"π Step 4: Create requirements.txt\n",
"Create a new file requirements.txt inside the same folder and add:\n",
"```bash\n",
"streamlit\n",
"requests\n",
"```\n",
"\n",
"π Step 5: Push Your Code to Hugging Face\n",
"Run these commands to push the code:\n",
"\n",
"```bash\n",
"git add .\n",
"git commit -m \"Initial commit\"\n",
"git push\n",
"```\n",
"π Your Space will automatically start building!"
],
"metadata": {
"id": "4RG98k__4Yg1"
}
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "Qem1BlA346Ke"
},
"execution_count": null,
"outputs": []
}
]
} |