import streamlit as st import tensorflow as tf import cv2 import numpy as np from lime import lime_image from skimage.segmentation import mark_boundaries import matplotlib.pyplot as plt from tensorflow.keras.models import load_model from grad_cam import GradCam from vit import CNN_ViT hp = {} hp['image_size'] = 256 hp['num_channels'] = 3 hp['patch_size'] = 32 hp['num_patches'] = (hp['image_size']**2) // (hp["patch_size"]**2) hp["flat_patches_shape"] = (hp["num_patches"], hp['patch_size']*hp['patch_size']*hp["num_channels"]) hp['batch_size'] = 32 hp['lr'] = 1e-4 hp["num_epochs"] = 30 hp['num_classes'] = 2 hp["num_layers"] = 6 hp["hidden_dim"] = 256 hp["mlp_dim"] = 256 hp['num_heads'] = 6 hp['dropout_rate'] = 0.1 hp['class_names'] = ["breast_benign", "breast_malignant"] #model = load_model("model/resnet_for_breast_cancer-v1.h5") model = CNN_ViT(hp) model.compile(loss='binary_crossentropy', optimizer = tf.keras.optimizers.Adam(hp['lr'], clipvalue=1.0), metrics=['acc'] ) model.load_weights("model/Breast-ResViT.keras") print("Model initiated") explainer = lime_image.LimeImageExplainer() def main(): st.title("Breast Cancer Classification") # Upload image through drag and drop uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Convert the uploaded file to OpenCV format image, gray_img = convert_to_opencv(uploaded_file) gray_img = cv2.resize(gray_img, [256,256]) #gradCam = GradCam(model, image, last_conv_layer_name='conv5_block3_3_conv') # Display the uploaded image st.image(image, channels="BGR", caption="Uploaded Image", use_column_width=True) # Display the image shape image_class = predict_single_image(image, model, hp) #gradCam.save_and_display_gradcam() st.write(f"Image Class: {image_class}") explanation = explainer.explain_instance( gray_img.astype('double'), model.predict, top_labels=2, hide_color=0, num_samples=100 ) temp, mask = explanation.get_image_and_mask( explanation.top_labels[0], positive_only=True, num_features=5, hide_rest=True ) temp = (temp / 2 + 0.5) xai = mark_boundaries(temp.clip(0, 1), mask) # Save and display LIME explanation lime_explanation_path = 'lime_explanation.png' cv2.imwrite(lime_explanation_path, (xai * 255).astype(np.uint8)) st.image((xai * 255).astype(np.uint8), caption="LIME Explanation", use_column_width=True) def convert_to_opencv(uploaded_file): # Read the uploaded file using OpenCV image_bytes = uploaded_file.read() np_arr = np.frombuffer(image_bytes, np.uint8) image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR) gray_img = cv2.imdecode(np_arr, cv2.IMREAD_GRAYSCALE) return image, gray_img def process_image_as_batch(image): #resize the image image = cv2.resize(image, [256, 256]) #scale the image image = image / 255.0 #change the data type of image image = image.astype(np.float32) return image def predict_single_image(image, model, hp): # Preprocess the image preprocessed_image = process_image_as_batch(image) # Convert the preprocessed image to a TensorFlow tensor if needed preprocessed_image = tf.convert_to_tensor(preprocessed_image) # Add an extra batch dimension (required for model.predict) preprocessed_image = tf.expand_dims(preprocessed_image, axis=0) # Make the prediction predictions = model.predict(preprocessed_image) np.around(predictions) y_pred_classes = np.argmax(predictions, axis=1) class_name = hp['class_names'][y_pred_classes[0]] return class_name if __name__ == "__main__": main()