created
Browse files- grad_cam.py +82 -0
grad_cam.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras.models import load_model, Model
|
3 |
+
import cv2
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib.cm as cm
|
7 |
+
|
8 |
+
class GradCam:
|
9 |
+
def __init__(self, model, img, size:tuple, last_conv_layer_name, pred_index=None):
|
10 |
+
self.model = model
|
11 |
+
self.img_path = img
|
12 |
+
self.size = size
|
13 |
+
self.last_conv_layer_name = last_conv_layer_name
|
14 |
+
|
15 |
+
|
16 |
+
def make_gradcam_heatmap(self, pred_index=None):
|
17 |
+
# First, we create a model that maps the input image to the activations
|
18 |
+
# of the last conv layer as well as the output predictions
|
19 |
+
img_array= self.img_path
|
20 |
+
grad_model = tf.keras.models.Model(
|
21 |
+
[self.model.inputs], [self.model.get_layer(self.last_conv_layer_name).output, self.model.output]
|
22 |
+
)
|
23 |
+
|
24 |
+
# Compute the gradient of the top predicted class for our input image
|
25 |
+
# with respect to the activations of the last conv layer
|
26 |
+
with tf.GradientTape() as tape:
|
27 |
+
last_conv_layer_output, preds = grad_model(img_array)
|
28 |
+
if pred_index is None:
|
29 |
+
pred_index = tf.argmax(preds[0])
|
30 |
+
class_channel = preds[:, pred_index]
|
31 |
+
|
32 |
+
# This is the gradient of the output neuron (top predicted or chosen)
|
33 |
+
# with regard to the output feature map of the last conv layer
|
34 |
+
grads = tape.gradient(class_channel, last_conv_layer_output)
|
35 |
+
|
36 |
+
# This is a vector where each entry is the mean intensity of the gradient
|
37 |
+
# over a specific feature map channel
|
38 |
+
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
39 |
+
|
40 |
+
# We multiply each channel in the feature map array
|
41 |
+
# by "how important this channel is" with regard to the top predicted class
|
42 |
+
last_conv_layer_output = last_conv_layer_output[0]
|
43 |
+
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
|
44 |
+
heatmap = tf.squeeze(heatmap)
|
45 |
+
|
46 |
+
# For visualization purpose, we will also normalize the heatmap between 0 & 1
|
47 |
+
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
|
48 |
+
return heatmap.numpy()
|
49 |
+
|
50 |
+
|
51 |
+
def save_and_display_gradcam(self, cam_path="cam.jpg", alpha=0.4):
|
52 |
+
heatmap = self.make_gradcam_heatmap()
|
53 |
+
# Load the original image
|
54 |
+
|
55 |
+
img = self.img_path
|
56 |
+
|
57 |
+
# Rescale the heatmap to a range 0-255
|
58 |
+
heatmap = np.uint8(255 * heatmap)
|
59 |
+
|
60 |
+
# Use the jet colormap to colorize the heatmap
|
61 |
+
jet = cm.get_cmap("jet")
|
62 |
+
jet_colors = jet(np.arange(512))[:, :3]
|
63 |
+
jet_heatmap = jet_colors[heatmap]
|
64 |
+
|
65 |
+
# Create an image with the RGB heatmap
|
66 |
+
jet_heatmap = tf.keras.preprocessing.image.array_to_img(jet_heatmap)
|
67 |
+
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
|
68 |
+
jet_heatmap = tf.keras.preprocessing.image.img_to_array(jet_heatmap)
|
69 |
+
|
70 |
+
# Superimpose the heatmap on the original image
|
71 |
+
superimposed_img = jet_heatmap * alpha + img
|
72 |
+
superimposed_img = tf.keras.preprocessing.image.array_to_img(superimposed_img)
|
73 |
+
|
74 |
+
# Save and display the image
|
75 |
+
superimposed_img.save(cam_path)
|
76 |
+
plt.imshow(superimposed_img)
|
77 |
+
plt.axis('off')
|
78 |
+
plt.show()
|
79 |
+
plt.savefig(path)
|
80 |
+
|
81 |
+
|
82 |
+
|