ErnestBeckham
commited on
Commit
·
78cb732
1
Parent(s):
cc6af3f
application updated
Browse files
app.py
CHANGED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from huggingface_hub import from_pretrained_keras
|
6 |
+
from lime import lime_image
|
7 |
+
from skimage.segmentation import mark_boundaries
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
model = from_pretrained_keras('ErnestBeckham/BreastResViT')
|
13 |
+
explainer = lime_image.LimeImageExplainer()
|
14 |
+
|
15 |
+
hp = {}
|
16 |
+
hp['class_names'] = ["breast_benign", "breast_malignant"]
|
17 |
+
|
18 |
+
def main():
|
19 |
+
st.title("Breast Cancer Classification")
|
20 |
+
|
21 |
+
# Upload image through drag and drop
|
22 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
23 |
+
|
24 |
+
if uploaded_file is not None:
|
25 |
+
# Convert the uploaded file to OpenCV format
|
26 |
+
image = convert_to_opencv(uploaded_file)
|
27 |
+
|
28 |
+
# Display the uploaded image
|
29 |
+
st.image(image, channels="BGR", caption="Uploaded Image", use_column_width=True)
|
30 |
+
|
31 |
+
# Display the image shape
|
32 |
+
image_class = predict_single_image(image, model, hp)
|
33 |
+
st.write(f"Image Class: {image_class}")
|
34 |
+
|
35 |
+
def convert_to_opencv(uploaded_file):
|
36 |
+
# Read the uploaded file using OpenCV
|
37 |
+
image_bytes = uploaded_file.read()
|
38 |
+
np_arr = np.frombuffer(image_bytes, np.uint8)
|
39 |
+
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
|
40 |
+
return image
|
41 |
+
|
42 |
+
def process_image_as_batch(image):
|
43 |
+
#resize the image
|
44 |
+
image = cv2.resize(image, [512, 512])
|
45 |
+
#scale the image
|
46 |
+
image = image / 255.0
|
47 |
+
#change the data type of image
|
48 |
+
image = image.astype(np.float32)
|
49 |
+
return image
|
50 |
+
|
51 |
+
def predict_single_image(image, model, hp):
|
52 |
+
# Preprocess the image
|
53 |
+
preprocessed_image = process_image_as_batch(image)
|
54 |
+
# Convert the preprocessed image to a TensorFlow tensor if needed
|
55 |
+
preprocessed_image = tf.convert_to_tensor(preprocessed_image)
|
56 |
+
# Add an extra batch dimension (required for model.predict)
|
57 |
+
preprocessed_image = tf.expand_dims(preprocessed_image, axis=0)
|
58 |
+
# Make the prediction
|
59 |
+
predictions = model.predict(preprocessed_image)
|
60 |
+
|
61 |
+
np.around(predictions)
|
62 |
+
y_pred_classes = np.argmax(predictions, axis=1)
|
63 |
+
class_name = hp['class_names'][y_pred_classes[0]]
|
64 |
+
return class_name
|
65 |
+
|
66 |
+
|
67 |
+
def xai_result(image):
|
68 |
+
path = "lime_explanation.png"
|
69 |
+
tem = cv2.resize(image, [512,512])
|
70 |
+
gray_img = cv2.cvtColor(tem, cv2.COLOR_BGR2GRAY)
|
71 |
+
explanation = explainer.explain_instance(gray_img.astype('double'),
|
72 |
+
model.predict,
|
73 |
+
top_labels=1000, hide_color=0, num_samples=1000)
|
74 |
+
temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=5, hide_rest=True)
|
75 |
+
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask), interpolation='nearest')
|
76 |
+
plt.savefig(path)
|
77 |
+
|
78 |
+
|
79 |
+
if __name__ == "__main__":
|
80 |
+
main()
|