test
Browse files
app.py
CHANGED
@@ -12,69 +12,7 @@ import matplotlib.pyplot as plt
|
|
12 |
model = from_pretrained_keras("ErnestBeckham/BreastResViT")
|
13 |
#explainer = lime_image.LimeImageExplainer()
|
14 |
|
15 |
-
hp = {}
|
16 |
-
hp['class_names'] = ["breast_benign", "breast_malignant"]
|
17 |
|
18 |
-
def main():
|
19 |
-
st.title("Breast Cancer Classification")
|
20 |
-
|
21 |
-
# Upload image through drag and drop
|
22 |
-
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
23 |
-
|
24 |
-
if uploaded_file is not None:
|
25 |
-
# Convert the uploaded file to OpenCV format
|
26 |
-
image = convert_to_opencv(uploaded_file)
|
27 |
-
|
28 |
-
# Display the uploaded image
|
29 |
-
st.image(image, channels="BGR", caption="Uploaded Image", use_column_width=True)
|
30 |
-
|
31 |
-
# Display the image shape
|
32 |
-
image_class = predict_single_image(image, model, hp)
|
33 |
-
st.write(f"Image Class: {image_class}")
|
34 |
-
|
35 |
-
def convert_to_opencv(uploaded_file):
|
36 |
-
# Read the uploaded file using OpenCV
|
37 |
-
image_bytes = uploaded_file.read()
|
38 |
-
np_arr = np.frombuffer(image_bytes, np.uint8)
|
39 |
-
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
|
40 |
-
return image
|
41 |
-
|
42 |
-
def process_image_as_batch(image):
|
43 |
-
#resize the image
|
44 |
-
image = cv2.resize(image, [512, 512])
|
45 |
-
#scale the image
|
46 |
-
image = image / 255.0
|
47 |
-
#change the data type of image
|
48 |
-
image = image.astype(np.float32)
|
49 |
-
return image
|
50 |
-
|
51 |
-
def predict_single_image(image, model, hp):
|
52 |
-
# Preprocess the image
|
53 |
-
preprocessed_image = process_image_as_batch(image)
|
54 |
-
# Convert the preprocessed image to a TensorFlow tensor if needed
|
55 |
-
preprocessed_image = tf.convert_to_tensor(preprocessed_image)
|
56 |
-
# Add an extra batch dimension (required for model.predict)
|
57 |
-
preprocessed_image = tf.expand_dims(preprocessed_image, axis=0)
|
58 |
-
# Make the prediction
|
59 |
-
predictions = model.predict(preprocessed_image)
|
60 |
-
|
61 |
-
np.around(predictions)
|
62 |
-
y_pred_classes = np.argmax(predictions, axis=1)
|
63 |
-
class_name = hp['class_names'][y_pred_classes[0]]
|
64 |
-
return class_name
|
65 |
-
|
66 |
-
|
67 |
-
"""def xai_result(image):
|
68 |
-
path = "lime_explanation.png"
|
69 |
-
tem = cv2.resize(image, [512,512])
|
70 |
-
gray_img = cv2.cvtColor(tem, cv2.COLOR_BGR2GRAY)
|
71 |
-
explanation = explainer.explain_instance(gray_img.astype('double'),
|
72 |
-
model.predict,
|
73 |
-
top_labels=1000, hide_color=0, num_samples=1000)
|
74 |
-
temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=5, hide_rest=True)
|
75 |
-
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask), interpolation='nearest')
|
76 |
-
plt.savefig(path)"""
|
77 |
-
|
78 |
|
79 |
if __name__ == "__main__":
|
80 |
main()
|
|
|
12 |
model = from_pretrained_keras("ErnestBeckham/BreastResViT")
|
13 |
#explainer = lime_image.LimeImageExplainer()
|
14 |
|
|
|
|
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
if __name__ == "__main__":
|
18 |
main()
|