ErnestBeckham commited on
Commit
60a2888
·
verified ·
1 Parent(s): 0849a73
Files changed (1) hide show
  1. app.py +0 -62
app.py CHANGED
@@ -12,69 +12,7 @@ import matplotlib.pyplot as plt
12
  model = from_pretrained_keras("ErnestBeckham/BreastResViT")
13
  #explainer = lime_image.LimeImageExplainer()
14
 
15
- hp = {}
16
- hp['class_names'] = ["breast_benign", "breast_malignant"]
17
 
18
- def main():
19
- st.title("Breast Cancer Classification")
20
-
21
- # Upload image through drag and drop
22
- uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
23
-
24
- if uploaded_file is not None:
25
- # Convert the uploaded file to OpenCV format
26
- image = convert_to_opencv(uploaded_file)
27
-
28
- # Display the uploaded image
29
- st.image(image, channels="BGR", caption="Uploaded Image", use_column_width=True)
30
-
31
- # Display the image shape
32
- image_class = predict_single_image(image, model, hp)
33
- st.write(f"Image Class: {image_class}")
34
-
35
- def convert_to_opencv(uploaded_file):
36
- # Read the uploaded file using OpenCV
37
- image_bytes = uploaded_file.read()
38
- np_arr = np.frombuffer(image_bytes, np.uint8)
39
- image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
40
- return image
41
-
42
- def process_image_as_batch(image):
43
- #resize the image
44
- image = cv2.resize(image, [512, 512])
45
- #scale the image
46
- image = image / 255.0
47
- #change the data type of image
48
- image = image.astype(np.float32)
49
- return image
50
-
51
- def predict_single_image(image, model, hp):
52
- # Preprocess the image
53
- preprocessed_image = process_image_as_batch(image)
54
- # Convert the preprocessed image to a TensorFlow tensor if needed
55
- preprocessed_image = tf.convert_to_tensor(preprocessed_image)
56
- # Add an extra batch dimension (required for model.predict)
57
- preprocessed_image = tf.expand_dims(preprocessed_image, axis=0)
58
- # Make the prediction
59
- predictions = model.predict(preprocessed_image)
60
-
61
- np.around(predictions)
62
- y_pred_classes = np.argmax(predictions, axis=1)
63
- class_name = hp['class_names'][y_pred_classes[0]]
64
- return class_name
65
-
66
-
67
- """def xai_result(image):
68
- path = "lime_explanation.png"
69
- tem = cv2.resize(image, [512,512])
70
- gray_img = cv2.cvtColor(tem, cv2.COLOR_BGR2GRAY)
71
- explanation = explainer.explain_instance(gray_img.astype('double'),
72
- model.predict,
73
- top_labels=1000, hide_color=0, num_samples=1000)
74
- temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=5, hide_rest=True)
75
- plt.imshow(mark_boundaries(temp / 2 + 0.5, mask), interpolation='nearest')
76
- plt.savefig(path)"""
77
-
78
 
79
  if __name__ == "__main__":
80
  main()
 
12
  model = from_pretrained_keras("ErnestBeckham/BreastResViT")
13
  #explainer = lime_image.LimeImageExplainer()
14
 
 
 
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  if __name__ == "__main__":
18
  main()