ErnestBeckham commited on
Commit
4866010
·
verified ·
1 Parent(s): 0ab3424

updated app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -4
app.py CHANGED
@@ -3,16 +3,78 @@ import tensorflow as tf
3
  import cv2
4
  import numpy as np
5
  from huggingface_hub import from_pretrained_keras
6
- #from lime import lime_image
7
- #from skimage.segmentation import mark_boundaries
8
  import matplotlib.pyplot as plt
9
 
10
 
 
11
 
12
- model = from_pretrained_keras("ErnestBeckham/BreastResViT")
13
- #explainer = lime_image.LimeImageExplainer()
14
 
 
 
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  if __name__ == "__main__":
18
  main()
 
3
  import cv2
4
  import numpy as np
5
  from huggingface_hub import from_pretrained_keras
6
+ from lime import lime_image
7
+ from skimage.segmentation import mark_boundaries
8
  import matplotlib.pyplot as plt
9
 
10
 
11
+ model = tf.keras.models.load_model("model\\resnet_for_breast_cancer-v1.h5")
12
 
13
+ explainer = lime_image.LimeImageExplainer()
 
14
 
15
+ hp = {}
16
+ hp['class_names'] = ["breast_benign", "breast_malignant"]
17
 
18
+ def main():
19
+ st.title("Breast Cancer Classification")
20
+
21
+ # Upload image through drag and drop
22
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
23
+
24
+ if uploaded_file is not None:
25
+ # Convert the uploaded file to OpenCV format
26
+ image = convert_to_opencv(uploaded_file)
27
+
28
+ # Display the uploaded image
29
+ st.image(image, channels="BGR", caption="Uploaded Image", use_column_width=True)
30
+
31
+ # Display the image shape
32
+ image_class = predict_single_image(image, model, hp)
33
+ st.write(f"Image Class: {image_class}")
34
+
35
+ def convert_to_opencv(uploaded_file):
36
+ # Read the uploaded file using OpenCV
37
+ image_bytes = uploaded_file.read()
38
+ np_arr = np.frombuffer(image_bytes, np.uint8)
39
+ image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
40
+ return image
41
+
42
+ def process_image_as_batch(image):
43
+ #resize the image
44
+ image = cv2.resize(image, [512, 512])
45
+ #scale the image
46
+ image = image / 255.0
47
+ #change the data type of image
48
+ image = image.astype(np.float32)
49
+ return image
50
+
51
+ def predict_single_image(image, model, hp):
52
+ # Preprocess the image
53
+ preprocessed_image = process_image_as_batch(image)
54
+ # Convert the preprocessed image to a TensorFlow tensor if needed
55
+ preprocessed_image = tf.convert_to_tensor(preprocessed_image)
56
+ # Add an extra batch dimension (required for model.predict)
57
+ preprocessed_image = tf.expand_dims(preprocessed_image, axis=0)
58
+ # Make the prediction
59
+ predictions = model.predict(preprocessed_image)
60
+
61
+ np.around(predictions)
62
+ y_pred_classes = np.argmax(predictions, axis=1)
63
+ class_name = hp['class_names'][y_pred_classes[0]]
64
+ return class_name
65
+
66
+
67
+ def xai_result(image):
68
+ path = "lime_explanation.png"
69
+ tem = cv2.resize(image, [512,512])
70
+ gray_img = cv2.cvtColor(tem, cv2.COLOR_BGR2GRAY)
71
+ explanation = explainer.explain_instance(gray_img.astype('double'),
72
+ model.predict,
73
+ top_labels=1000, hide_color=0, num_samples=1000)
74
+ temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=5, hide_rest=True)
75
+ plt.imshow(mark_boundaries(temp / 2 + 0.5, mask), interpolation='nearest')
76
+ plt.savefig(path)
77
+
78
 
79
  if __name__ == "__main__":
80
  main()