ErnestBeckham
commited on
Commit
·
43f7f5d
1
Parent(s):
03e7919
updated
Browse files
app.py
CHANGED
@@ -3,14 +3,14 @@ import tensorflow as tf
|
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
from huggingface_hub import from_pretrained_keras
|
6 |
-
from lime import lime_image
|
7 |
-
from skimage.segmentation import mark_boundaries
|
8 |
import matplotlib.pyplot as plt
|
9 |
|
10 |
|
11 |
|
12 |
model = from_pretrained_keras('ErnestBeckham/BreastResViT')
|
13 |
-
explainer = lime_image.LimeImageExplainer()
|
14 |
|
15 |
hp = {}
|
16 |
hp['class_names'] = ["breast_benign", "breast_malignant"]
|
@@ -64,7 +64,7 @@ def predict_single_image(image, model, hp):
|
|
64 |
return class_name
|
65 |
|
66 |
|
67 |
-
def xai_result(image):
|
68 |
path = "lime_explanation.png"
|
69 |
tem = cv2.resize(image, [512,512])
|
70 |
gray_img = cv2.cvtColor(tem, cv2.COLOR_BGR2GRAY)
|
@@ -73,7 +73,7 @@ def xai_result(image):
|
|
73 |
top_labels=1000, hide_color=0, num_samples=1000)
|
74 |
temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=5, hide_rest=True)
|
75 |
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask), interpolation='nearest')
|
76 |
-
plt.savefig(path)
|
77 |
|
78 |
|
79 |
if __name__ == "__main__":
|
|
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
from huggingface_hub import from_pretrained_keras
|
6 |
+
#from lime import lime_image
|
7 |
+
#from skimage.segmentation import mark_boundaries
|
8 |
import matplotlib.pyplot as plt
|
9 |
|
10 |
|
11 |
|
12 |
model = from_pretrained_keras('ErnestBeckham/BreastResViT')
|
13 |
+
#explainer = lime_image.LimeImageExplainer()
|
14 |
|
15 |
hp = {}
|
16 |
hp['class_names'] = ["breast_benign", "breast_malignant"]
|
|
|
64 |
return class_name
|
65 |
|
66 |
|
67 |
+
"""def xai_result(image):
|
68 |
path = "lime_explanation.png"
|
69 |
tem = cv2.resize(image, [512,512])
|
70 |
gray_img = cv2.cvtColor(tem, cv2.COLOR_BGR2GRAY)
|
|
|
73 |
top_labels=1000, hide_color=0, num_samples=1000)
|
74 |
temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=5, hide_rest=True)
|
75 |
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask), interpolation='nearest')
|
76 |
+
plt.savefig(path)"""
|
77 |
|
78 |
|
79 |
if __name__ == "__main__":
|