updated
Browse files
vit.py
CHANGED
|
@@ -10,7 +10,7 @@ class ClassToken(layers.Layer):
|
|
| 10 |
#initial values for the weight
|
| 11 |
w_init = tf.random_normal_initializer()
|
| 12 |
self.w = tf.Variable(
|
| 13 |
-
initial_value = w_init(shape=(1, 1, input_shape[-1]), dtype=tf.float32),
|
| 14 |
trainable = True
|
| 15 |
)
|
| 16 |
|
|
@@ -22,7 +22,8 @@ class ClassToken(layers.Layer):
|
|
| 22 |
cls = tf.broadcast_to(self.w, [batch_size, 1, hidden_dim])
|
| 23 |
#change data type
|
| 24 |
cls = tf.cast(cls, dtype=inputs.dtype)
|
| 25 |
-
return cls
|
|
|
|
| 26 |
|
| 27 |
def mlp(x, cf):
|
| 28 |
x = layers.Dense(cf['mlp_dim'], activation='gelu')(x)
|
|
@@ -31,20 +32,20 @@ def mlp(x, cf):
|
|
| 31 |
x = layers.Dropout(cf['dropout_rate'])(x)
|
| 32 |
return x
|
| 33 |
|
| 34 |
-
|
| 35 |
def transformer_encoder(x, cf):
|
| 36 |
skip_1 = x
|
| 37 |
x = layers.LayerNormalization()(x)
|
| 38 |
x = layers.MultiHeadAttention(num_heads=cf['num_heads'], key_dim=cf['hidden_dim'])(x,x)
|
| 39 |
x = layers.Add()([x, skip_1])
|
| 40 |
-
|
| 41 |
skip_2 = x
|
| 42 |
x = layers.LayerNormalization()(x)
|
| 43 |
x = mlp(x, cf)
|
| 44 |
x = layers.Add()([x, skip_2])
|
| 45 |
-
|
| 46 |
return x
|
| 47 |
|
|
|
|
| 48 |
def resnet_block(x, filters, strides=1):
|
| 49 |
identity = x
|
| 50 |
|
|
@@ -63,13 +64,14 @@ def resnet_block(x, filters, strides=1):
|
|
| 63 |
x = layers.Activation('relu')(x)
|
| 64 |
return x
|
| 65 |
|
|
|
|
| 66 |
def build_resnet(input_shape):
|
| 67 |
|
| 68 |
x = layers.Conv2D(32, kernel_size=7, strides=2, padding='same')(input_shape)
|
| 69 |
x = layers.BatchNormalization()(x)
|
| 70 |
x = layers.Activation('relu')(x)
|
| 71 |
x = layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
|
| 72 |
-
|
| 73 |
x = resnet_block(x, filters=32)
|
| 74 |
x = resnet_block(x, filters=32)
|
| 75 |
|
|
@@ -78,13 +80,10 @@ def build_resnet(input_shape):
|
|
| 78 |
|
| 79 |
x = resnet_block(x, filters=128, strides=2)
|
| 80 |
x = resnet_block(x, filters=128)
|
| 81 |
-
|
| 82 |
x = resnet_block(x, filters=256, strides=2)
|
| 83 |
x = resnet_block(x, filters=256)
|
| 84 |
-
|
| 85 |
-
x = resnet_block(x, filters=512, strides=2)
|
| 86 |
-
x = resnet_block(x, filters=512)
|
| 87 |
-
|
| 88 |
return x
|
| 89 |
|
| 90 |
|
|
@@ -108,21 +107,20 @@ def CNN_ViT(hp):
|
|
| 108 |
print(f"position embeding : {pos_embed.shape}")
|
| 109 |
#Patch + Position Embedding
|
| 110 |
embed = patch_embed + pos_embed
|
| 111 |
-
|
| 112 |
#Token
|
| 113 |
token = ClassToken()(embed)
|
| 114 |
x = layers.Concatenate(axis=1)([token, embed]) #(None, 257, 256)
|
| 115 |
-
|
| 116 |
#Transformer encoder
|
| 117 |
for _ in range(hp['num_layers']):
|
| 118 |
x = transformer_encoder(x, hp)
|
| 119 |
-
|
| 120 |
-
|
| 121 |
x = layers.LayerNormalization()(x)
|
| 122 |
x = x[:, 0, :]
|
| 123 |
x = layers.Dense(hp['num_classes'], activation='softmax')(x)
|
| 124 |
-
|
| 125 |
model = Model(inputs, x)
|
| 126 |
-
|
| 127 |
return model
|
| 128 |
|
|
|
|
| 10 |
#initial values for the weight
|
| 11 |
w_init = tf.random_normal_initializer()
|
| 12 |
self.w = tf.Variable(
|
| 13 |
+
initial_value = w_init(shape=(1, 1, input_shape[-1]), dtype=tf.float32),
|
| 14 |
trainable = True
|
| 15 |
)
|
| 16 |
|
|
|
|
| 22 |
cls = tf.broadcast_to(self.w, [batch_size, 1, hidden_dim])
|
| 23 |
#change data type
|
| 24 |
cls = tf.cast(cls, dtype=inputs.dtype)
|
| 25 |
+
return cls
|
| 26 |
+
|
| 27 |
|
| 28 |
def mlp(x, cf):
|
| 29 |
x = layers.Dense(cf['mlp_dim'], activation='gelu')(x)
|
|
|
|
| 32 |
x = layers.Dropout(cf['dropout_rate'])(x)
|
| 33 |
return x
|
| 34 |
|
|
|
|
| 35 |
def transformer_encoder(x, cf):
|
| 36 |
skip_1 = x
|
| 37 |
x = layers.LayerNormalization()(x)
|
| 38 |
x = layers.MultiHeadAttention(num_heads=cf['num_heads'], key_dim=cf['hidden_dim'])(x,x)
|
| 39 |
x = layers.Add()([x, skip_1])
|
| 40 |
+
|
| 41 |
skip_2 = x
|
| 42 |
x = layers.LayerNormalization()(x)
|
| 43 |
x = mlp(x, cf)
|
| 44 |
x = layers.Add()([x, skip_2])
|
| 45 |
+
|
| 46 |
return x
|
| 47 |
|
| 48 |
+
|
| 49 |
def resnet_block(x, filters, strides=1):
|
| 50 |
identity = x
|
| 51 |
|
|
|
|
| 64 |
x = layers.Activation('relu')(x)
|
| 65 |
return x
|
| 66 |
|
| 67 |
+
|
| 68 |
def build_resnet(input_shape):
|
| 69 |
|
| 70 |
x = layers.Conv2D(32, kernel_size=7, strides=2, padding='same')(input_shape)
|
| 71 |
x = layers.BatchNormalization()(x)
|
| 72 |
x = layers.Activation('relu')(x)
|
| 73 |
x = layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
|
| 74 |
+
|
| 75 |
x = resnet_block(x, filters=32)
|
| 76 |
x = resnet_block(x, filters=32)
|
| 77 |
|
|
|
|
| 80 |
|
| 81 |
x = resnet_block(x, filters=128, strides=2)
|
| 82 |
x = resnet_block(x, filters=128)
|
| 83 |
+
|
| 84 |
x = resnet_block(x, filters=256, strides=2)
|
| 85 |
x = resnet_block(x, filters=256)
|
| 86 |
+
|
|
|
|
|
|
|
|
|
|
| 87 |
return x
|
| 88 |
|
| 89 |
|
|
|
|
| 107 |
print(f"position embeding : {pos_embed.shape}")
|
| 108 |
#Patch + Position Embedding
|
| 109 |
embed = patch_embed + pos_embed
|
| 110 |
+
|
| 111 |
#Token
|
| 112 |
token = ClassToken()(embed)
|
| 113 |
x = layers.Concatenate(axis=1)([token, embed]) #(None, 257, 256)
|
| 114 |
+
|
| 115 |
#Transformer encoder
|
| 116 |
for _ in range(hp['num_layers']):
|
| 117 |
x = transformer_encoder(x, hp)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
x = layers.LayerNormalization()(x)
|
| 121 |
x = x[:, 0, :]
|
| 122 |
x = layers.Dense(hp['num_classes'], activation='softmax')(x)
|
| 123 |
+
|
| 124 |
model = Model(inputs, x)
|
|
|
|
| 125 |
return model
|
| 126 |
|