ErnestBeckham's picture
updated
9bc917f verified
raw
history blame
2.81 kB
import streamlit as st
import tensorflow as tf
import cv2
import numpy as np
from huggingface_hub import from_pretrained_keras
from lime import lime_image
from skimage.segmentation import mark_boundaries
import matplotlib.pyplot as plt
#model = tf.keras.models.load_model("model/resnet_for_breast_cancer-v1.h5")
model = from_pretrained_keras("ErnestBeckham/BreastResViT-II")
explainer = lime_image.LimeImageExplainer()
hp = {}
hp['class_names'] = ["breast_benign", "breast_malignant"]
def main():
st.title("Breast Cancer Classification")
# Upload image through drag and drop
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Convert the uploaded file to OpenCV format
image = convert_to_opencv(uploaded_file)
# Display the uploaded image
st.image(image, channels="BGR", caption="Uploaded Image", use_column_width=True)
# Display the image shape
image_class = predict_single_image(image, model, hp)
xai_result("lime_Ex.png")
st.write(f"Image Class: {image_class}")
def convert_to_opencv(uploaded_file):
# Read the uploaded file using OpenCV
image_bytes = uploaded_file.read()
np_arr = np.frombuffer(image_bytes, np.uint8)
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
return image
def process_image_as_batch(image):
#resize the image
image = cv2.resize(image, [512, 512])
#scale the image
image = image / 255.0
#change the data type of image
image = image.astype(np.float32)
return image
def predict_single_image(image, model, hp):
# Preprocess the image
preprocessed_image = process_image_as_batch(image)
# Convert the preprocessed image to a TensorFlow tensor if needed
preprocessed_image = tf.convert_to_tensor(preprocessed_image)
# Add an extra batch dimension (required for model.predict)
preprocessed_image = tf.expand_dims(preprocessed_image, axis=0)
# Make the prediction
predictions = model.predict(preprocessed_image)
np.around(predictions)
y_pred_classes = np.argmax(predictions, axis=1)
class_name = hp['class_names'][y_pred_classes[0]]
return class_name
def xai_result(image):
path = "lime_explanation.png"
tem = cv2.resize(image, [512,512])
gray_img = cv2.cvtColor(tem, cv2.COLOR_BGR2GRAY)
explanation = explainer.explain_instance(gray_img.astype('double'),
model.predict,
top_labels=1000, hide_color=0, num_samples=1000)
temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=5, hide_rest=True)
plt.imshow(mark_boundaries(temp / 2 + 0.5, mask), interpolation='nearest')
plt.savefig(path)
if __name__ == "__main__":
main()