Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import (GPT2Tokenizer, GPT2ForSequenceClassification) | |
model = GPT2ForSequenceClassification.from_pretrained(pretrained_model_name_or_path='ErnestBeckham/gpt-2-finetuned-ai-content') | |
tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model_name_or_path='ErnestBeckham/gpt2-tokenizer-ai-content') | |
text = st.text_area("Paste your Content") | |
if text: | |
tokenized_input = tokenizer(sentence, return_tensors='pt') | |
with torch.no_grad(): | |
outputs = model(**tokenized_input) | |
logits = outputs.logits | |
predicted_class = torch.argmax(logits, dim=-1).item() | |
st.json(predicted_class) |