|
import os
|
|
import logging
|
|
from typing import List, Tuple
|
|
from functools import cached_property
|
|
from pydantic import BaseModel, Field
|
|
from openai import OpenAI
|
|
import faiss
|
|
import pickle
|
|
import numpy as np
|
|
from dotenv import load_dotenv
|
|
import gradio as gr
|
|
from datetime import datetime
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
NO_DATA_MESSAGE = "I apologize, but I encountered an error processing your request."
|
|
|
|
class LocalEmbedding:
|
|
"""Local embedding model wrapper"""
|
|
def __init__(self, model_name: str = "all-MiniLM-L6-v2"):
|
|
self.model = SentenceTransformer(model_name)
|
|
self.vector_dim = self.model.get_sentence_embedding_dimension()
|
|
|
|
def get_embedding(self, text: str) -> List[float]:
|
|
"""Get embedding using local model"""
|
|
try:
|
|
embedding = self.model.encode(text)
|
|
return embedding.tolist()
|
|
except Exception as e:
|
|
logger.error(f"Error getting embedding: {e}")
|
|
return []
|
|
|
|
class DeepSeekChat(BaseModel):
|
|
"""DeepSeek chat model wrapper"""
|
|
api_key: str = Field(default=os.getenv("DEEPSEEK_API_KEY"))
|
|
base_url: str = Field(default="https://api.siliconflow.cn/v1")
|
|
|
|
class Config:
|
|
"""Pydantic config class"""
|
|
arbitrary_types_allowed = True
|
|
|
|
@cached_property
|
|
def client(self) -> OpenAI:
|
|
"""Create and cache OpenAI client instance"""
|
|
return OpenAI(api_key=self.api_key, base_url=self.base_url)
|
|
|
|
def chat(
|
|
self,
|
|
system_message: str,
|
|
user_message: str,
|
|
context: str = "",
|
|
model: str = "deepseek-ai/DeepSeek-V3",
|
|
max_tokens: int = 1024,
|
|
temperature: float = 0.7,
|
|
) -> str:
|
|
"""Send chat request to DeepSeek API"""
|
|
messages = []
|
|
|
|
|
|
if system_message:
|
|
messages.append({"role": "system", "content": system_message})
|
|
|
|
|
|
if context:
|
|
messages.append({"role": "user", "content": context})
|
|
|
|
|
|
messages.append({"role": "user", "content": user_message})
|
|
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=model,
|
|
messages=messages,
|
|
max_tokens=max_tokens,
|
|
temperature=temperature,
|
|
)
|
|
return response.choices[0].message.content
|
|
except Exception as e:
|
|
logger.error(f"Error in DeepSeek API call: {e}")
|
|
return NO_DATA_MESSAGE
|
|
|
|
class PDFChatbot:
|
|
def __init__(self, index_path: str, texts_path: str, model_name: str = "all-MiniLM-L6-v2"):
|
|
if not os.getenv("DEEPSEEK_API_KEY"):
|
|
raise ValueError("DEEPSEEK_API_KEY not found in .env file")
|
|
|
|
|
|
logger.info("Initializing models...")
|
|
self.chat_model = DeepSeekChat()
|
|
self.embedding_model = LocalEmbedding(model_name)
|
|
|
|
|
|
logger.info("Loading vector database...")
|
|
self.index = faiss.read_index(index_path)
|
|
with open(texts_path, 'rb') as f:
|
|
self.texts = pickle.load(f)
|
|
|
|
|
|
self.system_message = """You are a knowledgeable AI assistant that helps users understand the content of the provided document.
|
|
Use the context provided to answer questions accurately and comprehensively. If the answer cannot be found in the context,
|
|
clearly state that the information is not available in the document."""
|
|
|
|
|
|
self.log_file = f"pdf_chat_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt"
|
|
self.log_conversation("Conversation started")
|
|
|
|
def log_conversation(self, message, role="system"):
|
|
"""Log conversation with timestamp to file"""
|
|
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
with open(self.log_file, "a", encoding="utf-8") as f:
|
|
f.write(f"[{timestamp}] {role}: {message}\n")
|
|
|
|
def get_relevant_context(self, query: str, k: int = 3) -> str:
|
|
"""Get most relevant context for the query"""
|
|
try:
|
|
|
|
query_embedding = self.embedding_model.get_embedding(query)
|
|
if not query_embedding:
|
|
return ""
|
|
|
|
|
|
query_vector = np.array([query_embedding]).astype('float32')
|
|
distances, indices = self.index.search(query_vector, k)
|
|
|
|
|
|
relevant_texts = [self.texts[i] for i in indices[0]]
|
|
return "\n".join(relevant_texts)
|
|
except Exception as e:
|
|
logger.error(f"Error getting relevant context: {e}")
|
|
return ""
|
|
|
|
def chat(self, message, history):
|
|
"""Process chat message and return response"""
|
|
try:
|
|
|
|
self.log_conversation(message, "user")
|
|
|
|
|
|
context = self.get_relevant_context(message)
|
|
|
|
|
|
context_prompt = f"Based on the following context from the document:\n{context}\n\nPlease answer the question." if context else ""
|
|
|
|
|
|
response = self.chat_model.chat(
|
|
system_message=self.system_message,
|
|
user_message=message,
|
|
context=context_prompt
|
|
)
|
|
|
|
|
|
self.log_conversation(response, "assistant")
|
|
|
|
return response
|
|
except Exception as e:
|
|
logger.error(f"Error in chat: {e}")
|
|
return NO_DATA_MESSAGE
|
|
|
|
def main():
|
|
try:
|
|
|
|
index_path = "vectordb/1.index"
|
|
texts_path = "vectordb/1.pkl"
|
|
|
|
|
|
chatbot = PDFChatbot(index_path, texts_path)
|
|
|
|
|
|
iface = gr.ChatInterface(
|
|
fn=chatbot.chat,
|
|
title="PDF Document Assistant",
|
|
description="Ask questions about the loaded PDF document. I'll help you understand its contents.",
|
|
theme=gr.themes.Soft(),
|
|
examples=[
|
|
"What is the main topic of this document?",
|
|
"Can you summarize the key points?",
|
|
"What are the conclusions drawn in this document?"
|
|
],
|
|
)
|
|
|
|
|
|
iface.launch(share=False)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to initialize chatbot: {e}")
|
|
raise
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|