AskEric / app.py
EricGEGE's picture
Upload 4 files
b8255a8 verified
raw
history blame
7.23 kB
import os
import logging
from typing import List, Tuple
from functools import cached_property
from pydantic import BaseModel, Field
from openai import OpenAI
import faiss
import pickle
import numpy as np
from dotenv import load_dotenv
import gradio as gr
from datetime import datetime
from sentence_transformers import SentenceTransformer
# Load environment variables from .env file
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
NO_DATA_MESSAGE = "I apologize, but I encountered an error processing your request."
class LocalEmbedding:
"""Local embedding model wrapper"""
def __init__(self, model_name: str = "all-MiniLM-L6-v2"):
self.model = SentenceTransformer(model_name)
self.vector_dim = self.model.get_sentence_embedding_dimension()
def get_embedding(self, text: str) -> List[float]:
"""Get embedding using local model"""
try:
embedding = self.model.encode(text)
return embedding.tolist()
except Exception as e:
logger.error(f"Error getting embedding: {e}")
return []
class DeepSeekChat(BaseModel):
"""DeepSeek chat model wrapper"""
api_key: str = Field(default=os.getenv("DEEPSEEK_API_KEY"))
base_url: str = Field(default="https://api.siliconflow.cn/v1")
class Config:
"""Pydantic config class"""
arbitrary_types_allowed = True
@cached_property
def client(self) -> OpenAI:
"""Create and cache OpenAI client instance"""
return OpenAI(api_key=self.api_key, base_url=self.base_url)
def chat(
self,
system_message: str,
user_message: str,
context: str = "",
model: str = "deepseek-ai/DeepSeek-V3",
max_tokens: int = 1024,
temperature: float = 0.7,
) -> str:
"""Send chat request to DeepSeek API"""
messages = []
# Add system message if provided
if system_message:
messages.append({"role": "system", "content": system_message})
# Add context if provided
if context:
messages.append({"role": "user", "content": context})
# Add user message
messages.append({"role": "user", "content": user_message})
try:
response = self.client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"Error in DeepSeek API call: {e}")
return NO_DATA_MESSAGE
class PDFChatbot:
def __init__(self, index_path: str, texts_path: str, model_name: str = "all-MiniLM-L6-v2"):
if not os.getenv("DEEPSEEK_API_KEY"):
raise ValueError("DEEPSEEK_API_KEY not found in .env file")
# Initialize models
logger.info("Initializing models...")
self.chat_model = DeepSeekChat()
self.embedding_model = LocalEmbedding(model_name)
# Load vector database
logger.info("Loading vector database...")
self.index = faiss.read_index(index_path)
with open(texts_path, 'rb') as f:
self.texts = pickle.load(f)
# Chat settings
self.system_message = """You are a knowledgeable AI assistant that helps users understand the content of the provided document.
Use the context provided to answer questions accurately and comprehensively. If the answer cannot be found in the context,
clearly state that the information is not available in the document."""
# Create conversation log file with timestamp
self.log_file = f"pdf_chat_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt"
self.log_conversation("Conversation started")
def log_conversation(self, message, role="system"):
"""Log conversation with timestamp to file"""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
with open(self.log_file, "a", encoding="utf-8") as f:
f.write(f"[{timestamp}] {role}: {message}\n")
def get_relevant_context(self, query: str, k: int = 3) -> str:
"""Get most relevant context for the query"""
try:
# Get query embedding
query_embedding = self.embedding_model.get_embedding(query)
if not query_embedding:
return ""
# Search for similar contexts
query_vector = np.array([query_embedding]).astype('float32')
distances, indices = self.index.search(query_vector, k)
# Combine relevant contexts
relevant_texts = [self.texts[i] for i in indices[0]]
return "\n".join(relevant_texts)
except Exception as e:
logger.error(f"Error getting relevant context: {e}")
return ""
def chat(self, message, history):
"""Process chat message and return response"""
try:
# Log user message
self.log_conversation(message, "user")
# Get relevant context
context = self.get_relevant_context(message)
# If context is found, add it to the prompt
context_prompt = f"Based on the following context from the document:\n{context}\n\nPlease answer the question." if context else ""
# Get response from DeepSeek
response = self.chat_model.chat(
system_message=self.system_message,
user_message=message,
context=context_prompt
)
# Log assistant response
self.log_conversation(response, "assistant")
return response
except Exception as e:
logger.error(f"Error in chat: {e}")
return NO_DATA_MESSAGE
def main():
try:
# Replace these paths with your actual vector database files
index_path = "vectordb/1.index"
texts_path = "vectordb/1.pkl"
# Initialize chatbot
chatbot = PDFChatbot(index_path, texts_path)
# Create Gradio interface
iface = gr.ChatInterface(
fn=chatbot.chat,
title="PDF Document Assistant",
description="Ask questions about the loaded PDF document. I'll help you understand its contents.",
theme=gr.themes.Soft(),
examples=[
"What is the main topic of this document?",
"Can you summarize the key points?",
"What are the conclusions drawn in this document?"
],
)
# Launch the interface
iface.launch(share=False)
except Exception as e:
logger.error(f"Failed to initialize chatbot: {e}")
raise
if __name__ == "__main__":
main()