File size: 2,666 Bytes
415569c
 
 
 
 
 
 
 
 
 
98fd191
9dd43c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415569c
641955a
415569c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
<!doctype html>
<html>
	<head>
		<meta charset="utf-8" />
		<meta name="viewport" content="width=device-width" />
		<title>My static Space</title>
		<link rel="stylesheet" href="style.css" />
	</head>
	<body>
		<div class="card">
			<h1>Welcome to Super Transformer</h1>
            <p>Suptertransformer that auto loads Huggingface models </p>
            <h2>Introduction</h2>
            <p>This is a single line transformer for easy to load models from Huggingface.  It is not to replace Huggingface Transformer process.  It simplifies it and speed up the loading the process of the HuggingFace models</p>
            
                      
            <h2>Usage</h2>
            <p>SuperTransformers download the model locally.  The super class uses AutoTokenizer and AutoModelForCausalLM.from_pretrained.</p>
            
            <h2>Installation</h2>
            <code>
              pip install bitsandbytes>=0.39.0
              pip install --upgrade accelerate transformers
            </code>
            
            <h2>How to run</h2>
            <code>
            python SuperTransformer.py
            </code>
            
            <h2>Example of usage:</h2>
             
            <code>
            # Load SuperTransformer Class,  (1) Loads Huggingface model, (2) System Prompt (3) Text/prompt (4)Max tokens
            SuperTransformers = SuperTransformers("EpistemeAI/ReasoningCore-3B-RE1-V2","You are a highly knowledgeable assistant with expertise in chemistry and physics. <reasoning>","What is the area of a circle, radius=16, reason step by step", 2026)
            # 8-bit quantization
            SuperTransformers.HuggingFaceTransformer8bit()
            # or 4-bit quantization
            SuperTransformers.HuggingFaceTransformer4bit()
            </code>
            
            <h2>Returns model and tokenizer</h2>
            <code>
            SuperTransformers = SuperTransformers("EpistemeAI/ReasoningCore-3B-RE1-V2")
            model, tokenizer = HuggingfaceTransfomer()  #returns the model and tokenizer
            </code>
                      
            <h2>returns pipline as higher helper</h2>
            <code>
            SuperTransformers = SuperTransformers("EpistemeAI/ReasoningCore-3B-RE1-V2")
            pipe = HuggingfacePipeline()  #returns the pipeline only
            output = pipe(self.text, max_new_tokens=self.max_new_tokens)  # Limit output length to save memory
            # Print the generated output
            print(output)
            </code>
			</p>
          Try it today <a href="https://github.com/tomtyiu/SuperTransformer-SHF">SuperTransformer-SHF</a>
		</div>
	</body>
</html>