Spaces:
Running
Running
File size: 2,666 Bytes
415569c 98fd191 9dd43c7 415569c 641955a 415569c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
<!doctype html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width" />
<title>My static Space</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<div class="card">
<h1>Welcome to Super Transformer</h1>
<p>Suptertransformer that auto loads Huggingface models </p>
<h2>Introduction</h2>
<p>This is a single line transformer for easy to load models from Huggingface. It is not to replace Huggingface Transformer process. It simplifies it and speed up the loading the process of the HuggingFace models</p>
<h2>Usage</h2>
<p>SuperTransformers download the model locally. The super class uses AutoTokenizer and AutoModelForCausalLM.from_pretrained.</p>
<h2>Installation</h2>
<code>
pip install bitsandbytes>=0.39.0
pip install --upgrade accelerate transformers
</code>
<h2>How to run</h2>
<code>
python SuperTransformer.py
</code>
<h2>Example of usage:</h2>
<code>
# Load SuperTransformer Class, (1) Loads Huggingface model, (2) System Prompt (3) Text/prompt (4)Max tokens
SuperTransformers = SuperTransformers("EpistemeAI/ReasoningCore-3B-RE1-V2","You are a highly knowledgeable assistant with expertise in chemistry and physics. <reasoning>","What is the area of a circle, radius=16, reason step by step", 2026)
# 8-bit quantization
SuperTransformers.HuggingFaceTransformer8bit()
# or 4-bit quantization
SuperTransformers.HuggingFaceTransformer4bit()
</code>
<h2>Returns model and tokenizer</h2>
<code>
SuperTransformers = SuperTransformers("EpistemeAI/ReasoningCore-3B-RE1-V2")
model, tokenizer = HuggingfaceTransfomer() #returns the model and tokenizer
</code>
<h2>returns pipline as higher helper</h2>
<code>
SuperTransformers = SuperTransformers("EpistemeAI/ReasoningCore-3B-RE1-V2")
pipe = HuggingfacePipeline() #returns the pipeline only
output = pipe(self.text, max_new_tokens=self.max_new_tokens) # Limit output length to save memory
# Print the generated output
print(output)
</code>
</p>
Try it today <a href="https://github.com/tomtyiu/SuperTransformer-SHF">SuperTransformer-SHF</a>
</div>
</body>
</html>
|