Spaces:
Sleeping
Sleeping
| import os | |
| from glob import glob | |
| import librosa | |
| import torch | |
| import torchaudio | |
| import numpy as np | |
| from scipy.io.wavfile import read | |
| from tortoise.utils.stft import STFT | |
| BUILTIN_VOICES_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../voices') | |
| def load_wav_to_torch(full_path): | |
| sampling_rate, data = read(full_path) | |
| if data.dtype == np.int32: | |
| norm_fix = 2 ** 31 | |
| elif data.dtype == np.int16: | |
| norm_fix = 2 ** 15 | |
| elif data.dtype == np.float16 or data.dtype == np.float32: | |
| norm_fix = 1. | |
| else: | |
| raise NotImplemented(f"Provided data dtype not supported: {data.dtype}") | |
| return (torch.FloatTensor(data.astype(np.float32)) / norm_fix, sampling_rate) | |
| def load_audio(audiopath, sampling_rate): | |
| if audiopath[-4:] == '.wav': | |
| audio, lsr = load_wav_to_torch(audiopath) | |
| elif audiopath[-4:] == '.mp3': | |
| audio, lsr = librosa.load(audiopath, sr=sampling_rate) | |
| audio = torch.FloatTensor(audio) | |
| else: | |
| assert False, f"Unsupported audio format provided: {audiopath[-4:]}" | |
| # Remove any channel data. | |
| if len(audio.shape) > 1: | |
| if audio.shape[0] < 5: | |
| audio = audio[0] | |
| else: | |
| assert audio.shape[1] < 5 | |
| audio = audio[:, 0] | |
| if lsr != sampling_rate: | |
| audio = torchaudio.functional.resample(audio, lsr, sampling_rate) | |
| # Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk. | |
| # '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds. | |
| if torch.any(audio > 2) or not torch.any(audio < 0): | |
| print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}") | |
| audio.clip_(-1, 1) | |
| return audio.unsqueeze(0) | |
| TACOTRON_MEL_MAX = 2.3143386840820312 | |
| TACOTRON_MEL_MIN = -11.512925148010254 | |
| def denormalize_tacotron_mel(norm_mel): | |
| return ((norm_mel+1)/2)*(TACOTRON_MEL_MAX-TACOTRON_MEL_MIN)+TACOTRON_MEL_MIN | |
| def normalize_tacotron_mel(mel): | |
| return 2 * ((mel - TACOTRON_MEL_MIN) / (TACOTRON_MEL_MAX - TACOTRON_MEL_MIN)) - 1 | |
| def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
| """ | |
| PARAMS | |
| ------ | |
| C: compression factor | |
| """ | |
| return torch.log(torch.clamp(x, min=clip_val) * C) | |
| def dynamic_range_decompression(x, C=1): | |
| """ | |
| PARAMS | |
| ------ | |
| C: compression factor used to compress | |
| """ | |
| return torch.exp(x) / C | |
| def get_voices(extra_voice_dirs=[]): | |
| dirs = [BUILTIN_VOICES_DIR] + extra_voice_dirs | |
| voices = {} | |
| for d in dirs: | |
| subs = os.listdir(d) | |
| for sub in subs: | |
| subj = os.path.join(d, sub) | |
| if os.path.isdir(subj): | |
| voices[sub] = list(glob(f'{subj}/*.wav')) + list(glob(f'{subj}/*.mp3')) + list(glob(f'{subj}/*.pth')) | |
| return voices | |
| def load_voice(voice, extra_voice_dirs=[]): | |
| if voice == 'random': | |
| return None, None | |
| voices = get_voices(extra_voice_dirs) | |
| paths = voices[voice] | |
| if len(paths) == 1 and paths[0].endswith('.pth'): | |
| return None, torch.load(paths[0]) | |
| else: | |
| conds = [] | |
| for cond_path in paths: | |
| c = load_audio(cond_path, 22050) | |
| conds.append(c) | |
| return conds, None | |
| def load_voices(voices, extra_voice_dirs=[]): | |
| latents = [] | |
| clips = [] | |
| for voice in voices: | |
| if voice == 'random': | |
| if len(voices) > 1: | |
| print("Cannot combine a random voice with a non-random voice. Just using a random voice.") | |
| return None, None | |
| clip, latent = load_voice(voice, extra_voice_dirs) | |
| if latent is None: | |
| assert len(latents) == 0, "Can only combine raw audio voices or latent voices, not both. Do it yourself if you want this." | |
| clips.extend(clip) | |
| elif clip is None: | |
| assert len(clips) == 0, "Can only combine raw audio voices or latent voices, not both. Do it yourself if you want this." | |
| latents.append(latent) | |
| if len(latents) == 0: | |
| return clips, None | |
| else: | |
| latents_0 = torch.stack([l[0] for l in latents], dim=0).mean(dim=0) | |
| latents_1 = torch.stack([l[1] for l in latents], dim=0).mean(dim=0) | |
| latents = (latents_0,latents_1) | |
| return None, latents | |
| class TacotronSTFT(torch.nn.Module): | |
| def __init__(self, filter_length=1024, hop_length=256, win_length=1024, | |
| n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, | |
| mel_fmax=8000.0): | |
| super(TacotronSTFT, self).__init__() | |
| self.n_mel_channels = n_mel_channels | |
| self.sampling_rate = sampling_rate | |
| self.stft_fn = STFT(filter_length, hop_length, win_length) | |
| from librosa.filters import mel as librosa_mel_fn | |
| mel_basis = librosa_mel_fn( | |
| sr=sampling_rate, n_fft=filter_length, n_mels=n_mel_channels, fmin=mel_fmin, fmax=mel_fmax) | |
| mel_basis = torch.from_numpy(mel_basis).float() | |
| self.register_buffer('mel_basis', mel_basis) | |
| def spectral_normalize(self, magnitudes): | |
| output = dynamic_range_compression(magnitudes) | |
| return output | |
| def spectral_de_normalize(self, magnitudes): | |
| output = dynamic_range_decompression(magnitudes) | |
| return output | |
| def mel_spectrogram(self, y): | |
| """Computes mel-spectrograms from a batch of waves | |
| PARAMS | |
| ------ | |
| y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] | |
| RETURNS | |
| ------- | |
| mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) | |
| """ | |
| assert(torch.min(y.data) >= -10) | |
| assert(torch.max(y.data) <= 10) | |
| y = torch.clip(y, min=-1, max=1) | |
| magnitudes, phases = self.stft_fn.transform(y) | |
| magnitudes = magnitudes.data | |
| mel_output = torch.matmul(self.mel_basis, magnitudes) | |
| mel_output = self.spectral_normalize(mel_output) | |
| return mel_output | |
| def wav_to_univnet_mel(wav, do_normalization=False, device='cuda' if not torch.backends.mps.is_available() else 'mps'): | |
| stft = TacotronSTFT(1024, 256, 1024, 100, 24000, 0, 12000) | |
| stft = stft.to(device) | |
| mel = stft.mel_spectrogram(wav) | |
| if do_normalization: | |
| mel = normalize_tacotron_mel(mel) | |
| return mel | |