Spaces:
Sleeping
Sleeping
File size: 5,596 Bytes
a9eb918 8b85024 a9eb918 fcf22f8 26ce529 3055d40 a9eb918 43bed09 a9eb918 fcf22f8 a9eb918 21621d2 fcf22f8 c7b0462 0c5f557 c7b0462 fcf22f8 c7b0462 a5ef683 c7b0462 fcf22f8 c473268 c7b0462 c473268 c7b0462 c473268 c7b0462 29f7a53 c7b0462 29f7a53 c7b0462 c473268 5c4c65a c7b0462 3055d40 e1ac220 c7b0462 cc0de6d c7b0462 5c4c65a c7b0462 5c4c65a c7b0462 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import yt_dlp
import os
import streamlit as st
import transformers
from transformers import pipeline
from transformers import AutoTokenizer
import nltk
from PIL import Image
import torch
icon = Image.open("Traçado laranja #f1863d.png")
st.set_page_config(
page_title = "Turing Videos",
page_icon = icon,
layout = "wide",
initial_sidebar_state = "auto",
)
#Download youtube video
@st.cache_data
def download_audio(link):
with yt_dlp.YoutubeDL({'extract_audio': True, 'format': 'bestaudio', 'outtmpl': 'video.mp3'}) as video:
video.download(link)
#Load Whisper pipeline via HuggingFace
@st.cache_resource
def load_whisper(seconds):
return pipeline("automatic-speech-recognition",
model="openai/whisper-tiny",
chunk_length_s=seconds,
)
#Load Extractive Summarizer pipeline via HuggingFace
@st.cache_resource
def load_extractive():
return pipeline("summarization",
model = "NotXia/longformer-bio-ext-summ",
tokenizer = AutoTokenizer.from_pretrained("NotXia/longformer-bio-ext-summ"),
trust_remote_code = True,
)
#Load QA pipeline via HuggingFace
@st.cache_resource
def load_qa():
return pipeline("question-answering",
model='distilbert-base-uncased-distilled-squad'
)
#Download punkt function from nltk
@st.cache_data
def load_nltk():
nltk.download("punkt")
#Make the ASR task
@st.cache_data
def audio_speech_recognition(model_pipeline, video="video.mp3"):
return model_pipeline(video, batch_size=8)["text"].strip()
#Make the Summarization task
@st.cache_data
def text_summarization(model_pipeline, full_text, ratio):
sentences = nltk.sent_tokenize(full_text)
extractive_sentences = model_pipeline({"sentences": sentences}, strategy="ratio", strategy_args=ratio)
extractive_text = " ".join(extractive_sentences[0])
return extractive_text.strip()
#Make the QA task
@st.cache_data
def answer_questions(model_pipeline, full_text, questionings):
answers = []
for question in questionings:
result = model_pipeline(question=question, context=full_text)
answers.append(result["answer"])
return answers
def main():
header = st.container()
model = st.container()
model_1, model_2 = st.columns(2)
with st.sidebar:
st.title(":red[Turing]Videos")
with st.form("data_collection"):
language = st.selectbox('Qual a linguagem do seu modelo?',
('Português (pt)', 'Inglês (en)', 'Outra')
)
link = st.text_area(label="Coloque o link do seu vídeo do YouTube:",
height=25, placeholder="Digite seu link...")
compression_rate = st.slider(label="Selecione a taxa de compressão:",
min_value=0.1, max_value=0.9,
value=0.25, step=0.05
)
questions = st.text_area(label="Coloque suas perguntas separadas por vírgula!",
height=50, placeholder="Digite suas perguntas..."
).split(",")
seconds = st.select_slider(label="Digite a duração do seu vídeo para otimização:",
options = ["5 min", "15 min", "30 min", "45 min", "60 min"],
value = "15 min",
)
seconds = int(seconds.replace(" min", "")) * 60
submitted = st.form_submit_button("Submit")
if submitted:
st.success('Dados coletados!', icon="✅")
else:
st.error('Dados ainda não coletados!', icon="🚨")
with header:
st.title(":red[Turing]Videos")
st.subheader("Este projeto inovador utiliza técnicas avançadas de inteligência artificial para simplificar e acelerar a compreensão de conteúdo audiovisual.",
divider = "red"
)
with model:
if submitted:
with st.spinner("Carregando modelos..."):
if language == "Inglês (en)":
download_audio(link)
load_nltk()
whisper = load_whisper(seconds)
extractive = load_extractive()
qa_model = load_qa()
elif language == "Português (pt)":
st.header("Modelo ainda não implementado.")
else:
st.header("Erro na seleção de linguagem.")
with st.spinner("Transcrevendo texto..."):
transcript_text = audio_speech_recognition(whisper)
with model_1:
st.header("Texto Sumarizado:")
with st.spinner("Carregando sumarização..."):
summary = text_summarization(extractive, transcript_text, compression_rate)
st.subheader(summary)
with model_2:
st.header("Resposta das perguntas:")
with st.spinner("Carregando respostas..."):
answers = answer_questions(qa_model, transcript_text, questions)
for i in range(len(answers)):
st.subheader(questions[i])
st.subheader(answers[i])
st.write("\n")
main() |