Spaces:
Runtime error
Runtime error
Commit
·
37d5811
1
Parent(s):
caf6a8d
Build app
Browse files
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from textblob import TextBlob
|
2 |
+
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
3 |
+
from transformers import pipeline
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
def translate_text(text):
|
7 |
+
blob = TextBlob(text)
|
8 |
+
return str(blob.translate(from_lang="pt", to="en"))
|
9 |
+
|
10 |
+
def sentiment_classification(sentence):
|
11 |
+
sid_obj = SentimentIntensityAnalyzer()
|
12 |
+
|
13 |
+
sentiment_dict = sid_obj.polarity_scores(sentence)
|
14 |
+
negative = sentiment_dict['neg']
|
15 |
+
neutral = sentiment_dict['neu']
|
16 |
+
positive = sentiment_dict['pos']
|
17 |
+
compound = sentiment_dict['compound']
|
18 |
+
|
19 |
+
if sentiment_dict['compound'] >= 0.05 :
|
20 |
+
overall_sentiment = "Positive"
|
21 |
+
|
22 |
+
elif sentiment_dict['compound'] <= - 0.05 :
|
23 |
+
overall_sentiment = "Negative"
|
24 |
+
|
25 |
+
else :
|
26 |
+
overall_sentiment = "Neutral"
|
27 |
+
|
28 |
+
return overall_sentiment, sentiment_dict['compound']
|
29 |
+
|
30 |
+
def theme_classification(text):
|
31 |
+
|
32 |
+
labels = ["Industrial Goods",
|
33 |
+
"Communications",
|
34 |
+
"Cyclic Consumption",
|
35 |
+
"Non-cyclical Consumption",
|
36 |
+
"Financial",
|
37 |
+
"Basic Materials",
|
38 |
+
#"Others",
|
39 |
+
"Oil, Gas and Biofuels",
|
40 |
+
"Health",
|
41 |
+
#"Initial Sector",
|
42 |
+
"Information Technology",
|
43 |
+
"Public utility"]
|
44 |
+
|
45 |
+
template = "The economic sector of this set of words is {}."
|
46 |
+
|
47 |
+
classifier = pipeline("zero-shot-classification", model="joeddav/xlm-roberta-large-xnli")
|
48 |
+
|
49 |
+
results = classifier(text, labels, hypothesis_template=template)
|
50 |
+
|
51 |
+
index = results["scores"].index(max(results["scores"]))
|
52 |
+
|
53 |
+
return results["labels"][index]
|
54 |
+
|
55 |
+
text = st.text_area("Coloque seu texto sobre mercado financeiro em português!")
|
56 |
+
|
57 |
+
if text:
|
58 |
+
text_en = translate_text(text)
|
59 |
+
sentiment = sentiment_classification(text_en)
|
60 |
+
theme = theme_classification(text_en)
|
61 |
+
|
62 |
+
st.json({
|
63 |
+
"Translation": text_en,
|
64 |
+
"Sentiment": sentiment,
|
65 |
+
"Theme": theme,
|
66 |
+
})
|