Spaces:
Runtime error
Runtime error
Added initial files
Browse files- app.py +8 -0
- gtzan10_lstm_0.7179_l_1.12.h5 +3 -0
- inference.py +60 -0
- requirements.txt +102 -0
app.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from inference import *
|
3 |
+
|
4 |
+
def greet(name):
|
5 |
+
return "Hello " + name + "!"
|
6 |
+
|
7 |
+
iface = gr.Interface(fn=inference, inputs="audio", outputs="text")
|
8 |
+
iface.launch()
|
gtzan10_lstm_0.7179_l_1.12.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:810bee018dd749eeb44e51f54435a96a813ce36721f24126687f061232a9e8bb
|
3 |
+
size 19417544
|
inference.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math, librosa
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from tensorflow import keras
|
5 |
+
|
6 |
+
SAMPLE_RATE = 22050
|
7 |
+
def extract_mfcc_batch(file_path, n_mfcc=13, n_fft=1024, hop_length=512, length_segment=10):
|
8 |
+
"""
|
9 |
+
Extract and return an mfcc batch
|
10 |
+
MFCC - Mel Frequency Cepstrum Coefficients
|
11 |
+
"""
|
12 |
+
mfcc_batch = []
|
13 |
+
num_samples_per_segment = 220500 #length_segment * SAMPLE_RATE
|
14 |
+
expected_num_mfcc_vectors_per_segment = math.ceil(num_samples_per_segment / hop_length)
|
15 |
+
|
16 |
+
signal, sr = librosa.load(file_path, sr=SAMPLE_RATE)
|
17 |
+
|
18 |
+
duration = librosa.get_duration(y=signal, sr=sr) #30 seconds
|
19 |
+
num_segments = int(duration/length_segment) #3
|
20 |
+
# process segments, extracting mfccs and storing data
|
21 |
+
for s in range(num_segments+1):
|
22 |
+
start_sample = num_samples_per_segment * s
|
23 |
+
finish_sample = start_sample + num_samples_per_segment
|
24 |
+
try:
|
25 |
+
mfcc = librosa.feature.mfcc(signal[start_sample:finish_sample],
|
26 |
+
sr=SAMPLE_RATE,
|
27 |
+
n_fft=n_fft,
|
28 |
+
n_mfcc=n_mfcc,
|
29 |
+
hop_length=hop_length
|
30 |
+
)
|
31 |
+
#(13, 431)
|
32 |
+
mfcc = mfcc.T # A transpose
|
33 |
+
# store mfcc for segment if it has the expected length
|
34 |
+
if len(mfcc) == 431:
|
35 |
+
mfcc_batch.append(mfcc.tolist())
|
36 |
+
except:
|
37 |
+
continue
|
38 |
+
return mfcc_batch
|
39 |
+
|
40 |
+
def inference(filename, model_path='gtzan10_lstm_0.7179_l_1.12.h5'):
|
41 |
+
model = keras.models.load_model(model_path)
|
42 |
+
mapping = ['blues',
|
43 |
+
'classical',
|
44 |
+
'country',
|
45 |
+
'disco',
|
46 |
+
'hiphop',
|
47 |
+
'jazz',
|
48 |
+
'metal',
|
49 |
+
'pop',
|
50 |
+
'reggae',
|
51 |
+
'rock']
|
52 |
+
mfcc = extract_mfcc_batch(filename)
|
53 |
+
pred = model.predict(mfcc)
|
54 |
+
genre = [mapping[i] for i in np.argmax(pred, axis=1)]
|
55 |
+
|
56 |
+
counter_ = {}
|
57 |
+
for i in genre:
|
58 |
+
counter_[genre.count(i)] = i
|
59 |
+
m = max(counter_)
|
60 |
+
return f"Genre: {counter_[m]}, Confidence: {max(counter_)/pred.shape[0]}"
|
requirements.txt
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.0.0
|
2 |
+
aiohttp==3.8.1
|
3 |
+
aiosignal==1.2.0
|
4 |
+
analytics-python==1.4.0
|
5 |
+
anyio==3.5.0
|
6 |
+
appdirs==1.4.4
|
7 |
+
asgiref==3.5.0
|
8 |
+
astunparse==1.6.3
|
9 |
+
async-timeout==4.0.2
|
10 |
+
attrs==21.4.0
|
11 |
+
audioread==2.1.9
|
12 |
+
backoff==1.10.0
|
13 |
+
bcrypt==3.2.0
|
14 |
+
cachetools==5.0.0
|
15 |
+
certifi==2021.10.8
|
16 |
+
cffi==1.15.0
|
17 |
+
charset-normalizer==2.0.12
|
18 |
+
click==8.0.4
|
19 |
+
colorama==0.4.4
|
20 |
+
cryptography==36.0.1
|
21 |
+
cycler==0.11.0
|
22 |
+
decorator==5.1.1
|
23 |
+
fastapi==0.74.0
|
24 |
+
ffmpy==0.3.0
|
25 |
+
flatbuffers==2.0
|
26 |
+
fonttools==4.29.1
|
27 |
+
frozenlist==1.3.0
|
28 |
+
gast==0.5.3
|
29 |
+
google-auth==2.6.0
|
30 |
+
google-auth-oauthlib==0.4.6
|
31 |
+
google-pasta==0.2.0
|
32 |
+
gradio==2.8.1
|
33 |
+
grpcio==1.44.0
|
34 |
+
h11==0.13.0
|
35 |
+
h5py==3.6.0
|
36 |
+
idna==3.3
|
37 |
+
importlib-metadata==4.11.1
|
38 |
+
Jinja2==3.0.3
|
39 |
+
joblib==1.1.0
|
40 |
+
keras==2.8.0
|
41 |
+
Keras-Preprocessing==1.1.2
|
42 |
+
kiwisolver==1.3.2
|
43 |
+
libclang==13.0.0
|
44 |
+
librosa==0.9.1
|
45 |
+
linkify-it-py==1.0.3
|
46 |
+
llvmlite==0.38.0
|
47 |
+
Markdown==3.3.6
|
48 |
+
markdown-it-py==2.0.1
|
49 |
+
MarkupSafe==2.1.0
|
50 |
+
matplotlib==3.5.1
|
51 |
+
mdit-py-plugins==0.3.0
|
52 |
+
mdurl==0.1.0
|
53 |
+
monotonic==1.6
|
54 |
+
multidict==6.0.2
|
55 |
+
numba==0.55.1
|
56 |
+
numpy==1.21.5
|
57 |
+
oauthlib==3.2.0
|
58 |
+
opt-einsum==3.3.0
|
59 |
+
packaging==21.3
|
60 |
+
pandas==1.4.1
|
61 |
+
paramiko==2.9.2
|
62 |
+
Pillow==9.0.1
|
63 |
+
pooch==1.6.0
|
64 |
+
protobuf==3.19.4
|
65 |
+
pyasn1==0.4.8
|
66 |
+
pyasn1-modules==0.2.8
|
67 |
+
pycparser==2.21
|
68 |
+
pycryptodome==3.14.1
|
69 |
+
pydantic==1.9.0
|
70 |
+
pydub==0.25.1
|
71 |
+
PyNaCl==1.5.0
|
72 |
+
pyparsing==3.0.7
|
73 |
+
pyspark==3.2.0
|
74 |
+
python-dateutil==2.8.2
|
75 |
+
python-multipart==0.0.5
|
76 |
+
pytz==2021.3
|
77 |
+
requests==2.27.1
|
78 |
+
requests-oauthlib==1.3.1
|
79 |
+
resampy==0.2.2
|
80 |
+
rsa==4.8
|
81 |
+
scikit-learn==1.0.2
|
82 |
+
scipy==1.8.0
|
83 |
+
six==1.16.0
|
84 |
+
sniffio==1.2.0
|
85 |
+
SoundFile==0.10.3.post1
|
86 |
+
starlette==0.17.1
|
87 |
+
tensorboard==2.8.0
|
88 |
+
tensorboard-data-server==0.6.1
|
89 |
+
tensorboard-plugin-wit==1.8.1
|
90 |
+
tensorflow==2.8.0
|
91 |
+
tensorflow-io-gcs-filesystem==0.24.0
|
92 |
+
termcolor==1.1.0
|
93 |
+
tf-estimator-nightly==2.8.0.dev2021122109
|
94 |
+
threadpoolctl==3.1.0
|
95 |
+
typing_extensions==4.1.1
|
96 |
+
uc-micro-py==1.0.1
|
97 |
+
urllib3==1.26.8
|
98 |
+
uvicorn==0.17.5
|
99 |
+
Werkzeug==2.0.3
|
100 |
+
wrapt==1.13.3
|
101 |
+
yarl==1.7.2
|
102 |
+
zipp==3.7.0
|