Spaces:
Sleeping
Sleeping
Nico8800
commited on
Commit
·
e051030
1
Parent(s):
a755c90
add curl agent with elbow and shoulder tools
Browse files
Modules/PoseEstimation/curl_agent.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from Modules.PoseEstimation.pose_estimator import calculate_angle, joints_id_dict, model
|
| 2 |
+
from langchain.tools import tool
|
| 3 |
+
from langchain.agents import AgentExecutor, create_tool_calling_agent
|
| 4 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 5 |
+
from langchain_core.messages import HumanMessage
|
| 6 |
+
from langchain_mistralai.chat_models import ChatMistralAI
|
| 7 |
+
|
| 8 |
+
from operator import itemgetter
|
| 9 |
+
from typing import Dict, List, Union
|
| 10 |
+
|
| 11 |
+
from langchain_core.messages import AIMessage
|
| 12 |
+
from langchain_core.runnables import (
|
| 13 |
+
Runnable,
|
| 14 |
+
RunnableLambda,
|
| 15 |
+
RunnableMap,
|
| 16 |
+
RunnablePassthrough,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
import numpy as np
|
| 20 |
+
|
| 21 |
+
# If api_key is not passed, default behavior is to use the `MISTRAL_API_KEY` environment variable.
|
| 22 |
+
llm = ChatMistralAI(model='mistral-large-latest', api_key="i5jSJkCFNGKfgIztloxTMjfckiFbYBj4")
|
| 23 |
+
|
| 24 |
+
@tool
|
| 25 |
+
def shoulder_angle(pose: list) -> float:
|
| 26 |
+
|
| 27 |
+
"""
|
| 28 |
+
Computes the shoulder angle.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
pose (list): list of keypoints
|
| 32 |
+
|
| 33 |
+
Returns:
|
| 34 |
+
arm_angle (float): arm angle with chest
|
| 35 |
+
"""
|
| 36 |
+
right_elbow = pose[joints_id_dict['right_elbow']]
|
| 37 |
+
right_shoulder = pose[joints_id_dict['right_shoulder']]
|
| 38 |
+
right_hip = pose[joints_id_dict['right_hip']]
|
| 39 |
+
|
| 40 |
+
left_elbow = pose[joints_id_dict['left_elbow']]
|
| 41 |
+
left_shoulder = pose[joints_id_dict['left_shoulder']]
|
| 42 |
+
left_hip = pose[joints_id_dict['left_hip']]
|
| 43 |
+
|
| 44 |
+
right_arm_angle = calculate_angle(right_elbow, right_shoulder, right_hip)
|
| 45 |
+
left_arm_angle = calculate_angle(left_elbow, left_shoulder, left_hip)
|
| 46 |
+
|
| 47 |
+
return right_arm_angle
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
@tool
|
| 51 |
+
def elbow_angle(pose):
|
| 52 |
+
"""
|
| 53 |
+
Computes the elbow angle.
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
pose (list): list of keypoints
|
| 57 |
+
|
| 58 |
+
Returns:
|
| 59 |
+
elbow_angle (float): elbow angle with chest
|
| 60 |
+
"""
|
| 61 |
+
right_elbow = pose[joints_id_dict['right_elbow']]
|
| 62 |
+
right_shoulder = pose[joints_id_dict['right_shoulder']]
|
| 63 |
+
right_wrist = pose[joints_id_dict['right_wrist']]
|
| 64 |
+
|
| 65 |
+
left_elbow = pose[joints_id_dict['left_elbow']]
|
| 66 |
+
left_shoulder = pose[joints_id_dict['left_shoulder']]
|
| 67 |
+
left_wrist = pose[joints_id_dict['left_wrist']]
|
| 68 |
+
|
| 69 |
+
right_elbow_angle = calculate_angle(right_shoulder, right_elbow, right_wrist)
|
| 70 |
+
left_elbow_angle = calculate_angle(left_shoulder, left_elbow, left_wrist)
|
| 71 |
+
|
| 72 |
+
return right_elbow_angle
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
tools = [shoulder_angle, elbow_angle]
|
| 76 |
+
|
| 77 |
+
llm_with_tools = llm.bind_tools(tools)
|
| 78 |
+
tool_map = {tool.name: tool for tool in tools}
|
| 79 |
+
|
| 80 |
+
# prompt = ChatPromptTemplate.from_messages(
|
| 81 |
+
# [
|
| 82 |
+
# (
|
| 83 |
+
# "system",
|
| 84 |
+
# "You are a helpful assistant. Make sure to use the compute_right_knee_angle tool for information.",
|
| 85 |
+
# ),
|
| 86 |
+
# ("placeholder", "{chat_history}"),
|
| 87 |
+
# ("human", "{input}"),
|
| 88 |
+
# ("placeholder", "{agent_scratchpad}"),
|
| 89 |
+
# ]
|
| 90 |
+
# )
|
| 91 |
+
|
| 92 |
+
# Construct the Tools agent
|
| 93 |
+
# curl_agent = create_tool_calling_agent(llm, tools, prompt)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
pose_sequence = [
|
| 97 |
+
# Pose 1
|
| 98 |
+
[
|
| 99 |
+
# Head
|
| 100 |
+
[50, 50],
|
| 101 |
+
# Shoulders
|
| 102 |
+
[40, 80], [60, 80],
|
| 103 |
+
# Elbows
|
| 104 |
+
[30, 110], [70, 110],
|
| 105 |
+
# Wrists
|
| 106 |
+
[25, 140], [75, 140],
|
| 107 |
+
# Hips
|
| 108 |
+
[45, 180], [55, 180],
|
| 109 |
+
# Knees
|
| 110 |
+
[40, 220], [60, 220],
|
| 111 |
+
# Ankles
|
| 112 |
+
[35, 250], [65, 250],
|
| 113 |
+
],
|
| 114 |
+
# Pose 2
|
| 115 |
+
[
|
| 116 |
+
# Head
|
| 117 |
+
[60, 60],
|
| 118 |
+
# Shoulders
|
| 119 |
+
[50, 90], [70, 90],
|
| 120 |
+
# Elbows
|
| 121 |
+
[40, 120], [80, 120],
|
| 122 |
+
# Wrists
|
| 123 |
+
[35, 150], [85, 150],
|
| 124 |
+
# Hips
|
| 125 |
+
[55, 180], [65, 180],
|
| 126 |
+
# Knees
|
| 127 |
+
[50, 220], [70, 220],
|
| 128 |
+
# Ankles
|
| 129 |
+
[45, 250], [75, 250],
|
| 130 |
+
]]
|
| 131 |
+
|
| 132 |
+
# Create an agent executor by passing in the agent and tools
|
| 133 |
+
# agent_executor = AgentExecutor(agent=curl_agent, tools=tools, verbose=True)
|
| 134 |
+
# agent_executor.invoke({"input": f"Compute shoulder and elbow angle and display them given the following pose estimation: {pose_sequence[0]}"})
|
| 135 |
+
|
| 136 |
+
def call_tools(msg: AIMessage) -> Runnable:
|
| 137 |
+
"""Simple sequential tool calling helper."""
|
| 138 |
+
tool_map = {tool.name: tool for tool in tools}
|
| 139 |
+
tool_calls = msg.tool_calls.copy()
|
| 140 |
+
for tool_call in tool_calls:
|
| 141 |
+
tool_call["output"] = tool_map[tool_call["name"]].invoke(tool_call["args"])
|
| 142 |
+
return tool_calls
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
chain = llm_with_tools | call_tools
|
| 146 |
+
|
| 147 |
+
print(chain.invoke(f"What is the shoulder angle and elbow angle given the following pose estimation: {pose_sequence[0]}"))
|