File size: 2,033 Bytes
a755c90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from Modules.PoseEstimation.pose_estimator import calculate_angle, joints_id_dict, model
from langchain.tools import tool
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

# If api_key is not passed, default behavior is to use the `MISTRAL_API_KEY` environment variable.
llm = ChatMistralAI(model='mistral-large-latest', api_key="i5jSJkCFNGKfgIztloxTMjfckiFbYBj4")

@tool
def compute_right_knee_angle(pose: list) -> float:

    """
    Computes the knee angle.

    Args:
        pose (list): list of keypoints

    Returns:
        knee_angle (float): knee angle
    """

    right_hip = pose[joints_id_dict['right_hip']]
    right_knee = pose[joints_id_dict['right_knee']]
    right_ankle = pose[joints_id_dict['right_ankle']]

    knee_angle = calculate_angle(right_hip, right_knee, right_ankle)

    print(knee_angle)

    return str(knee_angle)

@tool
def get_keypoints_from_path(video_path: str):
    """
    Get keypoints from a video.

    Args:
        video_path (str): path to the video
        model (YOLO): model to use

    Returns:
        keypoints (list): list of keypoints
    """

    keypoints = []
    results = model(video_path, save=True, show_conf=False, show_boxes=False)
    for frame in results:
        tensor = frame.keypoints.xy[0]
        keypoints.append(tensor.tolist())

    return keypoints



tools = [compute_right_knee_angle]

prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "You are a helpful assistant. Make sure to use the compute_right_knee_angle tool for information.",
        ),
        ("placeholder", "{chat_history}"),
        ("human", "{input}"),
        ("placeholder", "{agent_scratchpad}"),
    ]
)

# Construct the Tools agent
agent = create_tool_calling_agent(llm, tools, prompt)

agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)