File size: 5,371 Bytes
c104abf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
from dotenv import load_dotenv
load_dotenv() # load .env api keys 

mistral_api_key = os.getenv("MISTRAL_API_KEY")
print("mistral_api_key", mistral_api_key)
import pandas as pd
from langchain.output_parsers import PandasDataFrameOutputParser
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_mistralai import MistralAIEmbeddings
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from typing import Literal
from langchain_core.prompts import PromptTemplate
from langchain_mistralai import ChatMistralAI
from pathlib import Path
from langchain.retrievers import (
    MergerRetriever,
)
import pprint
from typing import Any, Dict
from huggingface_hub import login
login(token=os.getenv("HUGGING_FACE_TOKEN"))

def load_chunk_persist_pdf(task) -> Chroma:
    
    pdf_folder_path = os.path.join(os.getcwd(),Path(f"data/pdf/{task}"))
    documents = []
    for file in os.listdir(pdf_folder_path):
        if file.endswith('.pdf'):
            pdf_path = os.path.join(pdf_folder_path, file)
            loader = PyPDFLoader(pdf_path)
            documents.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
    chunked_documents = text_splitter.split_documents(documents)
    os.makedirs("data/chroma_store/", exist_ok=True)
    vectorstore = Chroma.from_documents(
        documents=chunked_documents,
        embedding=MistralAIEmbeddings(),
        persist_directory= os.path.join(os.getcwd(),Path("data/chroma_store/"))
    )
    vectorstore.persist()
    return vectorstore

df = pd.DataFrame(
    {
        "exercise": ["Squat","Bench Press","Lunges","Pull ups"],
        "sets": [4, 4, 3, 3],
        "repetitions": [10, 8, 8, 8],
        "rest":["2:30","2:00","1:30","2:00"]
    }
)

# parser = PandasDataFrameOutputParser(dataframe=df)

# personal_info_vectorstore = load_chunk_persist_pdf("personal_info")
# zero2hero_vectorstore = load_chunk_persist_pdf("zero2hero")
# bodyweight_vectorstore = load_chunk_persist_pdf("bodyweight")
# nutrition_vectorstore = load_chunk_persist_pdf("nutrition")
# workout_vectorstore = load_chunk_persist_pdf("workout")
# zero2hero_retriever = zero2hero_vectorstore.as_retriever()
# nutrition_retriever = nutrition_vectorstore.as_retriever()
# bodyweight_retriever = bodyweight_vectorstore.as_retriever()
# workout_retriever = workout_vectorstore.as_retriever()
# personal_info_retriever = personal_info_vectorstore.as_retriever()

llm = ChatMistralAI(model="mistral-large-latest", mistral_api_key=mistral_api_key, temperature=0)

# prompt = PromptTemplate(
#     template="""
#     You are a professional AI coach specialized in building fitness plans, full workout programs.
#     You must adapt to the user according to personal informations in the context. A You are gentle and motivative.
#     Use the following pieces of retrieved context to answer the user's query.

#     Context: {context} 
    
#     \n{format_instructions}\n{question}\n
#     """,
#     input_variables=["question","context"],
#     partial_variables={"format_instructions": parser.get_format_instructions()},
# )

# def format_docs(docs):
#         return "\n\n".join(doc.page_content for doc in docs)

# def format_parser_output(parser_output: Dict[str, Any]) -> None:
#     for key in parser_output.keys():
#         parser_output[key] = parser_output[key].to_dict()
#     return pprint.PrettyPrinter(width=4, compact=True).pprint(parser_output)
    
# retriever = MergerRetriever(retrievers=[zero2hero_retriever, bodyweight_retriever, nutrition_retriever, workout_retriever, personal_info_retriever])

# chain = (
#         {"context": zero2hero_retriever | format_docs, "question": RunnablePassthrough()}
#         | prompt
#         | llm
#         | parser
#     )

# # chain = prompt | llm | parser
# format_parser_output(chain.invoke("Build me a full body workout plan for summer body."))


from pydantic import BaseModel, Field
from typing import List
from langchain_core.output_parsers import JsonOutputParser

class Exercise(BaseModel):
    exercice: str = Field(description="Name of the exercise")
    nombre_series: int = Field(description="Number of sets for the exercise")
    nombre_repetitions: int = Field(description="Number of repetitions for the exercise")
    temps_repos: str = Field(description="Rest time between sets")

class MusculationProgram(BaseModel):
    exercises: List[Exercise]


from langchain.prompts import PromptTemplate

# Define your query to get a musculation program.
musculation_query = "Provide a musculation program with exercises, number of sets, number of repetitions, and rest time between sets."

# Set up a parser + inject instructions into the prompt template.
parser = JsonOutputParser(pydantic_object=MusculationProgram)

prompt = PromptTemplate(
    template="Answer the user query.\n{format_instructions}\n{query}\n",
    input_variables=["query"],
    partial_variables={"format_instructions": parser.get_format_instructions()},
)

# Set up a chain to invoke the language model with the prompt and parser.
workout_chain = prompt | llm | parser