Spaces:
Runtime error
Runtime error
File size: 30,349 Bytes
e0e645c 527aabe 9e41e67 0937fe3 e0e645c 8854da4 527aabe ef7132f e0e645c 98d9bf6 e0e645c 8d1595e 23f602c 8d1595e 23f602c 8d1595e 664f55d e2a97fe 3a331d7 e2a97fe e0e645c e2a97fe e0e645c 98d9bf6 e0e645c 9e41e67 e0e645c 20e6265 e0e645c cd02866 e0e645c cd02866 e0e645c cd02866 e0e645c cd02866 e0e645c cd02866 e0e645c 8a617c3 cf6272b 8a617c3 cf6272b 8a617c3 cf6272b 8a617c3 cf6272b 8a617c3 cf6272b 8a617c3 cf6272b 8a617c3 cf6272b e0e645c d7fefd7 e0e645c d7fefd7 e0e645c cb797e3 e0e645c d7fefd7 e0e645c cb797e3 5df31dd e0e645c cb797e3 d659810 cb797e3 77a5489 d659810 e0e645c d659810 e0e645c cb797e3 77a5489 e0e645c cb797e3 e0e645c cb797e3 5df31dd e0e645c cb797e3 5df31dd e0e645c cb797e3 5df31dd e0e645c cd02866 e0e645c cd02866 cf6272b 8a617c3 cb797e3 cf6272b b6fd69c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
import numpy as np
import gradio as gr
import torch
import requests
from PIL import Image
from diffusers import StableDiffusionDepth2ImgPipeline
from PIL import Image
import time
import io
import os
import warnings
from PIL import Image
from stability_sdk import client
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation
from diffusers import StableDiffusionImg2ImgPipeline
import urllib
from serpapi import GoogleSearch
from base64 import b64encode
from pathlib import Path
import openai
import logging
import grpc
import matplotlib.pyplot as plt
try:
import face_recognition
except:
pass
import pickle
import numpy as np
from PIL import Image
import cv2
logging.basicConfig(level=logging.DEBUG,filename="logger.log",filemode="a")
print("Hello")
current_time = time.asctime()
stability_api = client.StabilityInference(
key=os.environ['STABILITY_KEY'], # API Key reference.
verbose=True, # Print debug messages.
engine="stable-diffusion-512-v2-1", # Set the engine to use for generation. For SD 2.0 use "stable-diffusion-v2-0".
# Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0
# stable-diffusion-512-v2-1 stable-diffusion-768-v2-1 stable-inpainting-v1-0 stable-inpainting-512-v2-0
)
################
# Set up our initial generation parameters.
prompt ="photo of bespectacled woman, long curly blue hair, bright green eyes, freckled complexion, photorealistic, colorful, highly detailed 4k, realistic photo"
def transform_ncuda(img,prompt,cfg=8.0,stps=30,sc=0.8):
answers2 = stability_api.generate(
prompt=f"{prompt}",
init_image=img, # Assign our previously generated img as our Initial Image for transformation.
start_schedule=sc, # Set the strength of our prompt in relation to our initial image.
steps=stps,# If attempting to transform an image that was previously generated with our API,
# initial images benefit from having their own distinct seed rather than using the seed of the original image generation.
# Amount of inference steps performed on image generation. Defaults to 30.
cfg_scale=cfg, # Influences how strongly your generation is guided to match your prompt.
# Setting this value higher increases the strength in which it tries to match your prompt.
# Defaults to 7.0 if not specified.
width=512, # Generation width, defaults to 512 if not included.
height=512, # Generation height, defaults to 512 if not included.
sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with.
# Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers.
# (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m)
)
# Set up our warning to print to the console if the adult content classifier is tripped.
# If adult content classifier is not tripped, display generated image.
try:
for resp in answers2:
print('----------------------------------------------------------------------------------')
print(f'{resp}')
print(f'DEBUG: Type = {resp.__class__}')
for artifact in resp.artifacts:
if artifact.finish_reason == generation.FILTER:
warnings.warn(
"Your request activated the API's safety filters and could not be processed."
"Please modify the prompt and try again.")
if artifact.type == generation.ARTIFACT_IMAGE:
global img2
img2 = Image.open(io.BytesIO(artifact.binary))
return img2
except Exception as e:
img = img.resize((256,256), Image.ANTIALIAS)
return transform_ncuda(img,prompt,cfg=8.0,stps=30,sc=0.8)
# print(f'Caught error: {e}')
# logging.warn(f'Caught error: {e}')
# img = img.resize((256,256), Image.ANTIALIAS)
# print(f'Image resizing: (256,256)')
# return transform_ncuda(img,prompt)
# img2.save(str(artifact.seed)+ "-img2img.png") # Save our generated image with its seed number as the filename and the img2img suffix so that we know this is our transformed image.
#########################
def generate_stability(prompt):
# Set up our initial generation parameters.
answers = stability_api.generate(
prompt=f"{prompt}",
# If a seed is provided, the resulting generated image will be deterministic.
# What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again.
# Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook.
steps=30, # Amount of inference steps performed on image generation. Defaults to 30.
cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt.
# Setting this value higher increases the strength in which it tries to match your prompt.
# Defaults to 7.0 if not specified.
width=512, # Generation width, defaults to 512 if not included.
height=512, # Generation height, defaults to 512 if not included.
samples=1, # Number of images to generate, defaults to 1 if not included.
sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with.
# Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers.
# (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m)
)
# Set up our warning to print to the console if the adult content classifier is tripped.
# If adult content classifier is not tripped, save generated images.
for resp in answers:
for artifact in resp.artifacts:
if artifact.finish_reason == generation.FILTER:
warnings.warn(
"Your request activated the API's safety filters and could not be processed."
"Please modify the prompt and try again.")
if artifact.type == generation.ARTIFACT_IMAGE:
img = Image.open(io.BytesIO(artifact.binary))
# img.save(str(artifact.seed)+ ".png") # Save our generated images with their seed number as the filename.
return img
#################
global cuda_error1
cuda_error1 = 0
try:
device = "cuda"
model_id_or_path = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
pipe = pipe.to(device)
except:
cuda_error1 = 1
#####################
global cuda_error2
cuda_error2 = 0
try:
pipe1 = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth",
torch_dtype=torch.float16,
).to("cuda")
except:
cuda_error2 = 1
##################
def transform(init_image,prompt,n_prompt):
# init_image = init_image.resize((256,256), Image.ANTIALIAS)
if cuda_error2==0:
try:
image1 = pipe1(prompt=prompt, image=init_image, negative_prompt=n_prompt, strength=0.8).images[0]
except:
image1 = transform_ncuda(init_image,prompt)
# image1.save("img1.png")
# nimage = Image.open("img1.png")
else:
image1 = transform_ncuda(init_image,prompt)
im = np.asarray(image1)
return im
###################
def transform1(img,prompt,n_prompt):
img.save("img1.png")
# nimage = Image.open("img1.png").convert('RGB')
if cuda_error1==0:
try:
images = pipe(prompt=prompt, image=nimage,negative_prompt=n_prompt, strength=1, guidance_scale=15).images
im = np.asarray(images[0])
except:
image = transform_ncuda(img,prompt,15,50,0.95)
im = np.asarray(image)
# image1.save("img1.png")
# nimage = Image.open("img1.png")
else:
image = transform_ncuda(img,prompt,15,50,0.95)
im = np.asarray(image)
return im
#####################
openai.api_key = os.environ['OPENAI_KEY']
PROMPT = "colorful portrait 25 year bespectacled woman with long, curly skyblue hair and bright green eyes. She has a small, upturned nose and a freckled complexion. She is approximately 5'5 tall and has a thin build"
def generate(PROMPT,model):
# PROMPT = "An eco-friendly computer from the 90s in the style of vaporwave""Dall-E","StableDiffusion"
try:
img = generate_stability(PROMPT)
except grpc._channel._MultiThreadedRendezvous:
raise gr.Error("Invalid prompts detected")
return np.asarray(img)
########################
API_ENDPOINT = "https://api.imgbb.com/1/upload"
API_KEY = "51e7720f96af8eb5179e772e443c0c1e"
def imgLink(image):
pil_image = image.convert('RGB')
open_cv_image = np.array(pil_image)
cv2.imwrite("search.png",open_cv_image)
path = Path("search.png")
with open(path, "rb") as image:
image_data = b64encode(image.read()).decode()
# image_data = image
payload = {
"key": API_KEY,
"image": image_data
}
# Send the API request
response = requests.post(API_ENDPOINT, payload)
# print(response)
# # Get the generated link from the API response
response_json = response.json() #
# print("Response json:", response_json)
image_url = response_json["data"]["url"]
# print("Generated link:", image_url)
return image_url
############################
def google_search(image):
image_url = imgLink(image)
params = {
"engine": "google_lens",
"url": image_url,
"hl": "en",
"api_key": "9f32067b9dd74d6e94153036003ec0e6e24d54b36ffb09a340f9004012fdae98"
}
search = GoogleSearch(params)
result = search.get_dict()
t = ''
try:
for i in range(len(result['knowledge_graph'])):
t = t+ "Title : "+result['knowledge_graph'][i]['title']+"\n"
source = result["knowledge_graph"][i]['images'][0]['source']
t+=source+"\n"
except:
t = "Not Found"
try:
for i in range(0,min(2,len(result['visual_matches']))):
t = t+ "Title : "+result['visual_matches'][i]['title']+"\n"
source = result['visual_matches'][i]['source']
t+=source+"\n"
except:
t = "Not Found"
try:
img_link = result["visual_matches"][0]['thumbnail']
urllib.request.urlretrieve(img_link,"file")
img = Image.open("file")
img = np.asarray(img)
except:
img = image
return t,img
######################################################################
images_folder_path = 'Images'
#find path of xml file containing haarcascade file
# cascPathface = os.path.dirname(
# cv2.__file__) + "/data/haarcascade_frontalface_default.xml"
cascPathface = "haarcascade_frontalface_default.xml"
# cascPathface = cv2.data.haarcascades + "haarcascade_frontalface_default.xml"
# load the harcaascade in the cascade classifier
faceCascade = cv2.CascadeClassifier(cascPathface)
# load the known faces and embeddings saved in last file
data = pickle.loads(open('face_enc', "rb").read())
################################################################
def check_database(ima):
# file_bytes = np.asarray(bytearray(image_upload.read()), dtype=np.uint8) # https://github.com/streamlit/streamlit/issues/888
# opencv_image = cv2.imdecode(file_bytes, 1)
# st.image(image, caption=f"Uploaded Image {img_array.shape[0:2]}", use_column_width=True,)
# image = cv2.imread(img)
# rgb = cv2.cvtColor(opencv_image, cv2.COLOR_BGR2RGB)
#convert image to Greyscale for haarcascade
# image = cv2.imread(image)
try:
pil_image = ima.convert('RGB')
# pil_image = ima
open_cv_image = np.array(pil_image)
cv2.imwrite("new.png",open_cv_image)
# Convert RGB to BGR
image = open_cv_image[:, :, ::-1].copy()
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
faces = faceCascade.detectMultiScale(gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(60, 60),
flags=cv2.CASCADE_SCALE_IMAGE)
# the facial embeddings for face in input
encodings = face_recognition.face_encodings(image)
names = []
# loop over the facial embeddings incase
# we have multiple embeddings for multiple fcaes
for encoding in encodings:
#Compare encodings with encodings in data["encodings"]
#Matches contain array with boolean values and True for the embeddings it matches closely
#and False for rest
matches = face_recognition.compare_faces(data["encodings"],
encoding)
#set name =inknown if no encoding matches
name = "Unknown"
# check to see if we have found a match
if True in matches:
#Find positions at which we get True and store them
matchedIdxs = [i for (i, b) in enumerate(matches) if b]
counts = {}
# loop over the matched indexes and maintain a count for
# each recognized face face
for i in matchedIdxs:
#Check the names at respective indexes we stored in matchedIdxs
name = data["names"][i]
#increase count for the name we got
counts[name] = counts.get(name, 0) + 1
#set name which has highest count
name = max(counts, key=counts.get)
# update the list of names
names.append(name)
# loop over the recognized faces
for ((x, y, w, h), name) in zip(faces, names):
# rescale the face coordinates
# draw the predicted face name on the image
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(image, name, (x, y), cv2.FONT_HERSHEY_SIMPLEX,
0.75, (0, 255, 0), 2)
else: # To store the unknown new face with name
faces = faceCascade.detectMultiScale(gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(60, 60),
flags=cv2.CASCADE_SCALE_IMAGE)
cv2.imwrite('curr.png',image)
return name
except:
return "Need GPU"
###########################
def video(vid):
# return f'Uploaded video name: {vid.name}'
file = vid.name
print(f'file: {file}')
# file = vid
video = cv2.VideoCapture(file)
# video.set(cv2.CAP_PROP_FPS, 10)
if (video.isOpened() == False):
print("Error reading video file")
frame_width = int(video.get(3))
frame_height = int(video.get(4))
size = (frame_width, frame_height)
# # Below VideoWriter object will create
# # a frame of above defined The output
# # is stored in 'filename.avi' file.
result = cv2.VideoWriter('filename.mp4',
cv2.VideoWriter_fourcc(*'mp4v'),
10, size)
while(True):
ret, frame = video.read()
if ret == True:
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
faces = faceCascade.detectMultiScale(rgb,
scaleFactor=1.1,
minNeighbors=5,
minSize=(60, 60),
flags=cv2.CASCADE_SCALE_IMAGE)
# convert the input frame from BGR to RGB
# the facial embeddings for face in input
encodings = face_recognition.face_encodings(rgb)
names = []
# loop over the facial embeddings incase
# we have multiple embeddings for multiple fcaes
for encoding in encodings:
#Compare encodings with encodings in data["encodings"]
#Matches contain array with boolean values and True for the embeddings it matches closely
#and False for rest
matches = face_recognition.compare_faces(data["encodings"],
encoding)
#set name =inknown if no encoding matches
name = "Unknown"
# check to see if we have found a match
if True in matches:
#Find positions at which we get True and store them
matchedIdxs = [i for (i, b) in enumerate(matches) if b]
counts = {}
# loop over the matched indexes and maintain a count for
# each recognized face face
for i in matchedIdxs:
#Check the names at respective indexes we stored in matchedIdxs
name = data["names"][i]
#increase count for the name we got
counts[name] = counts.get(name, 0) + 1
#set name which has highest count
name = max(counts, key=counts.get)
# update the list of names
names.append(name)
# loop over the recognized faces
for ((x, y, w, h), name) in zip(faces, names):
# rescale the face coordinates
# draw the predicted face name on the image
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(frame, name, (x, y), cv2.FONT_HERSHEY_SIMPLEX,
0.75, (0, 255, 0), 2)
result.write(frame)
# cv2_imshow(frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Break the loop
else:
break
# print("The video was successfully saved")
return 'filename.mp4'
#################
def generate_prompt(AG,facftop,facfmid,facfbot):
response = openai.Completion.create(
model="text-davinci-003",
prompt="Generate Facial Description of person from the following desciptors-Realistic facial portrait sketch of " + AG + facftop + facfmid + facfbot,
temperature=0.1,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return (response["choices"][0]["text"])
##############################
openai.api_key = os.environ['OPENAI_KEY']
# os.getenv()
PROMPT = "Ankit went to the market. He called Raj then."
response = openai.Completion.create(
model="text-davinci-003",
prompt=f"Given a prompt, extrapolate as many relationships as possible from it and provide a list of updates.\n\nIf an update is a relationship, provide [ENTITY 1, RELATIONSHIP, ENTITY 2]. The relationship is directed, so the order matters.\n\nIf an update is related to deleting an entity, provide [\"DELETE\", ENTITY].\n\nExample:\nprompt: Alice is Bob's roommate. Alice likes music. Her roommate likes sports\nupdates:\n[[\"Alice\", \"roommate\", \"Bob\"],[\"Alice\",\"likes\",\"music\"],[\"Bob\",\"likes\",\"sports\"]]\n\nprompt: {PROMPT}\nupdates:",
temperature=0,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
###################
t = response["choices"][0]["text"]
t = t[2:]
t = t.replace("[",'').replace("]","")
t = t.split(",")
r = []
for i in range(len(t)//3):
r.append(t[3*i:3*i+3])
r
def get_edge_labels(t:list):
dct = {}
length_of_t = len(t)
for i in range(length_of_t):
t[i][0] = t[i][0].replace('"',"").replace("'","").strip()
t[i][2] = t[i][2].replace('"',"").replace("'","").strip()
t[i][1] = t[i][1].replace('"',"").replace("'","")
dct[(t[i][0],t[i][2] )] = t[i][1]
return dct
def knowledge_graph(prompt):
response = openai.Completion.create(
model="text-davinci-003",
prompt=f"""Given a prompt, extrapolate as many relationships as possible from it and provide a list of updates.\n\nIf an update is a relationship, provide
[ENTITY 1, RELATIONSHIP, ENTITY 2]. The relationship is directed, so the order matters.\n\nIf an update is related to deleting an entity, provide [\"DELETE\", ENTITY].\n\nExample:\nprompt: Alice is Bob's roommate. Alice likes music. Her roommate likes sports\nupdates:\n[[\"Alice\", \"roommate\", \"Bob\"],[\"Alice\",\"likes\",\"music\"],
[\"Bob\",\"likes\",\"sports\"]]\n\nprompt: {prompt}\nupdates:""",
temperature=0,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
r = response["choices"][0]["text"]
r = r[2:]
r = r.replace("[",'').replace("]","")
r = r.split(",")
t = []
for i in range(len(r)//3):
t.append(r[3*i:3*i+3])
# t = [['"Ankit"', '"went_to"', '"market"'], ['"Ankit"', '"called"', '"Raj"']]
import networkx as nx
import random
print(t)
G = nx.Graph()
new_nodes = []
print('Edge labels')
edge_labels = get_edge_labels(t)
print(edge_labels)
print(f't after edge labesl = {t}')
for i in t:
if not i[0] in new_nodes:
new_nodes.append(i[0])
G.add_node(i[0])
if not i[2] in new_nodes:
new_nodes.append(i[2])
G.add_node(i[2])
# G.add_node(i[0])
# G.add_node(i[2])
G.add_edge(i[0],i[2])
pos = nx.spring_layout(G)
nx.draw(G,pos,labels={node: node for node in G.nodes()})
x = nx.draw_networkx_edge_labels(
G, pos,
edge_labels=edge_labels,
font_color='red'
)
# print(x)
random_name = f'generated_img_{random.randint(1,100000)}.png'
plt.savefig(f"/tmp/{random_name}")
plt.clf()
img = Image.open(f"/tmp/{random_name}")
os.remove(f"/tmp/{random_name}")
return np.asarray(img)
c =knowledge_graph("Alice went to office. Called bob. Went to grocery shopping. Then went home")
#####################
disp_url = "https://i.ibb.co/TP4ddc6/sherlock.png"
det_url = "https://i.ibb.co/Ms1jcDv/104cc37752fa.png"
with gr.Blocks(css=".gradio-container {background-color: #F0FFFF}") as demo:
gr.Markdown("""<h1 style="color:black;font-family:monospace;text-align:center">Sherlock's Phoeniks</h1>""")
gr.Markdown("<h4 style='color:black;font-family:monospace'>Facial Recognition using Generative AI - ChatGPT+StableDiffusion,utilizing Computer Vision and Google Search API</h4>")
# gr.Image(display).style(height=400, width=1200)
gr.HTML(value="<img src='https://i.ibb.co/TP4ddc6/sherlock.png' alt='Flow Diagram' width='1200' height='300'/>")
# gr.Markdown("! [title](https://pixabay.com/photos/tree-sunset-clouds-sky-silhouette-736885/)")
gr.Markdown("""<p style='color:black;font-family:monospace'>Our Sherlock's Phoeniks Search Squad solution is a facial recognition
system that utilizes generative AI models like ChatGPT and stable
diffusion, as well as computer vision techniques, to identify and locate
missing persons in real time . The system will take input in the form of text
describing the appearance of the missing person, as well as raw images
such as sketches, CCTV footage, or blurry photos. The algorithm will then
search through internal databases and internet/social media platforms like
Facebook and Twitter to find matches and potentially identify the missing
person. This system has the potential to significantly aid Police and
Investigating agencies in their efforts to locate and bring missing persons
home</p>""")
gr.HTML(value="<img src='https://i.ibb.co/Ms1jcDv/104cc37752fa.png' alt='Flow Diagram' style='height:500px;width:1200px'>")
# gr.Image(detail).style(height=400, width=1200)
with gr.Accordion("Generate Prompt",open=False):
gr.Markdown("**Generate Prompt**")
gr.Markdown("**Refer to the example below**")
gr.HTML(value="<img src='https://i.ibb.co/hm1hGsP/503e7730-b23c-401a-a73a-3fef2eb074d9.jpg' alt='Generate Prompt' width='1200' height='300'/>")
print('DEBUG: FIRST WITH')
gr.Markdown("**Generate Prompt from the face description for image generation**")
with gr.Row():
with gr.Column():
print('DEBUG: SECOND WITH')
# seed = gr.Text(label="Input Phrase")
text1_1 = gr.Text(label="Enter Possible Age and Gender and Ethnicity for the Person")
text1_2 = gr.Text(label="Provide Desciptors for Hair and Eyebrows and Eyes")
text1_3 = gr.Text(label="Describe Skin Color, Blemishes, Nose Structure")
text1_4 = gr.Text(label="Descibe Facial Shape, build , chin structure in as much detail as possible")
print(f'{text1_1=}')
print(f'{text1_2=}')
print(f'{text1_3=}')
print(f'{text1_4=}')
with gr.Column():
# seed = gr.Text(label="Input Phrase")
text2 = gr.Text(label="Generated Phrase")
print(text2,'-------------')
abtn = gr.Button("Generate mugshot phrase")
abtn.click(generate_prompt, inputs=[text1_1,text1_2,text1_3,text1_4], outputs=text2)
with gr.Accordion("Generate MugShot",open=False):
gr.Markdown("**Generate MugShot from the input prompt using StableDiffusion**")
gr.Markdown("**Use StableDiffusion Image Generation for text to image**")
gr.Markdown("**Refer to the example below**")
gr.HTML(value="<img src='https://i.ibb.co/9WsBLD0/21aa355d-5005-4fbb-bf50-4ded05e6075e.jpg' alt='Genrate image from prompt' style='height:500px;width:1200px'>")
# model = gr.Radio(["StableDiffusion"])
with gr.Row():
with gr.Column():
# seed = gr.Text(label="Input Phrase")
text3 = gr.Text(label="Input Phrase")
with gr.Column():
# seed = gr.Text(label="Input Phrase")
im1 = gr.Image()
bbtn = gr.Button("Image from description")
bbtn.click(generate, inputs=[text3], outputs=im1)
with gr.Accordion("Image from Sketch",open=False):
gr.Markdown("**Get Enhanced Image from sketch and desired input promt using StableDiffusion**")
with gr.Accordion("Pre-drawn Sketch",open=False):
gr.Markdown("**Generate Colorful Image from pre drawn sketch**")
gr.Markdown("**Use StableDiffusion Depth2Image for Image to Image transformation**")
gr.Markdown("**Refer to the example below**")
gr.HTML(value="<img src='https://i.ibb.co/H4k0B7k/c58db90d-9479-411d-aaff-15863d2479a0.jpg' alt='Generate Image from sketch' style='height:500px;width:1200px'>")
with gr.Row():
with gr.Column():
# seed = gr.Text(label="Input Phrase")
text4 = gr.Text(label="Prompt")
text5 = gr.Text(label="Negative Prompt")
im2 = gr.Image(type="pil")
with gr.Column():
# seed = gr.Text(label="Input Phrase")
im3 = gr.Image()
cbtn = gr.Button("Sketch to color")
cbtn.click(transform, inputs=[im2,text4,text5], outputs=im3)
with gr.Accordion("Draw Sketch",open=False):
gr.Markdown("**Draw sketch on your own and give text description of features**")
gr.Markdown("**Generate Colorful Image using StableDiffusionImg2ImgPipeline**")
with gr.Row():
with gr.Column():
# seed = gr.Text(label="Input Phrase")
text6 = gr.Text(label="Prompt")
text7 = gr.Text(label="Negative Prompt")
# im1 = gr.Image(type="pil",interactive=True)
im4 = gr.Sketchpad(shape=(256,256),invert_colors=False,type="pil")
with gr.Column():
# seed = gr.Text(label="Input Phrase")
im5 = gr.Image()
ebtn = gr.Button("Draw Sketch to color")
ebtn.click(transform1, inputs=[im4,text6,text7], outputs=im5)
with gr.Accordion("Check Database",open=False):
gr.Markdown("**Check if the image matches any image in our database using face recognition**")
gr.Markdown("**Use Face Recognition, Face Detection and Computer Vision to match images**")
gr.Markdown("**Refer to the example below**")
gr.HTML(value="<img src='https://i.ibb.co/bBnDxqT/c5d2fe61-4b99-4cbc-934c-1ae9edfa4386.png' alt='Check Database' width='1200' height='300'/>")
with gr.Row():
with gr.Column():
# seed = gr.Text(label="Input Phrase")
im6 = gr.Image(type="pil")
with gr.Column():
# seed = gr.Text(label="Input Phrase")
text8 = gr.Text(label="Identified Name")
fbtn = gr.Button("Find the Name")
fbtn.click(check_database, inputs=im6, outputs=text8)
with gr.Accordion("Search Google",open=False):
gr.Markdown("**Check if the image is present on the Internet**")
gr.Markdown("**Using Google search api to search the image on Web**")
gr.Markdown("**Refer to the example below**")
gr.HTML(value="<img src='https://i.ibb.co/9v7vwVF/58f827cc-e24a-4df8-ab0f-40204d0940ec.jpg' alt='Check Google' width='1200' height='300'/>")
with gr.Row():
with gr.Column():
# seed = gr.Text(label="Input Phrase")
im7 = gr.Image(type="pil")
with gr.Column():
text9 = gr.Text(label="Identified Title")
im8 = gr.Image()
gbtn = gr.Button("Find the Name")
gbtn.click(google_search, inputs=im7, outputs=[text9,im8])
with gr.Accordion("Search in CCTV footage",open=False):
gr.Markdown("**Upload a video to identify missing person in the footage**")
gr.Markdown("**Refer to the example below**")
gr.HTML(value="<img src='https://i.ibb.co/H7t0R5C/bb71faf0-f86f-4064-b796-7a4dea6efdc7.jpg' alt='Check cctv' width='1200' height='300'/>")
with gr.Row():
with gr.Column():
fil1 = gr.File(type="file")
with gr.Column():
vid2 = gr.Video()
# video_name = gr.Text(label="Video Upload")
hbtn = gr.Button("Video")
hbtn.click(video, inputs=fil1, outputs=vid2)
with gr.Accordion("Generate Knowledge Graph",open=False):
gr.Markdown("**Genrate Knowledge Graph**")
gr.Markdown("**Refer to the example below**")
gr.HTML(value="<img src='https://i.ibb.co/j3j5Y3Q/4f4f9ed9-b52d-4ed9-a5e8-5864bffd4718.jpg' alt='Generate knowlwdge graph' width='1200' height='300'/>")
with gr.Row():
with gr.Column():
prompt_to_generate_graph = gr.Text()
with gr.Column():
generated_graph_pic = gr.Image()
generate_knowledge_graph = gr.Button("Generate Knowledge Graph")
generate_knowledge_graph.click(knowledge_graph, inputs=prompt_to_generate_graph, outputs=generated_graph_pic)
demo.launch(debug=True) |