File size: 4,968 Bytes
5177cd2
e64e7b1
 
 
 
8ea457b
e64e7b1
 
 
 
5177cd2
 
e64e7b1
 
 
5177cd2
 
e64e7b1
 
 
 
aed021b
8ea457b
 
 
 
 
 
 
 
aed021b
e64e7b1
8ea457b
 
 
 
aed021b
 
 
e64e7b1
aed021b
e64e7b1
 
 
 
aed021b
8ea457b
 
e64e7b1
 
 
 
 
9dcd426
5177cd2
aed021b
 
e64e7b1
 
 
 
aed021b
5177cd2
 
 
e64e7b1
b30005f
e64e7b1
 
 
5177cd2
 
e64e7b1
aed021b
e64e7b1
 
 
 
aed021b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64e7b1
 
 
 
 
 
5177cd2
e64e7b1
aed021b
5177cd2
e64e7b1
8ea457b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from datasets import load_dataset
import torch
import re

# Cache to avoid reloading the model
model_cache = {}

HF_TOKEN = os.environ.get("HF_TOKEN")

def load_model(model_id):
    if model_id in model_cache:
        return model_cache[model_id]
    tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
    model = AutoModelForCausalLM.from_pretrained(model_id, token=HF_TOKEN).to("cuda" if torch.cuda.is_available() else "cpu")
    generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
    model_cache[model_id] = generator
    return generator

def format_prompt(item):
    system_instruction = "
Only answer with a single letter: A, B, C, or D."
    prompt = f"{item['question']}
A. {item['choices'][0]}
B. {item['choices'][1]}
C. {item['choices'][2]}
D. {item['choices'][3]}
Answer:{system_instruction}"
    return prompt, item['answer']

def extract_choice_letter(output):
    match = re.search(r"\b([ABCD])\b", output.strip())
    return match.group(1) if match else None

def evaluate(model_id, sample_count, config_name):
    gen = load_model(model_id)
    dataset = load_dataset("cais/mmlu", config_name, token=HF_TOKEN)["test"]
    dataset = dataset.shuffle(seed=42).select(range(min(sample_count, len(dataset))))

    correct = 0
    results = []

    for item in dataset:
        prompt, answer = format_prompt(item)
        output = gen(prompt, max_new_tokens=20, do_sample=False)[0]["generated_text"]
        output_letter = extract_choice_letter(output)
        is_correct = output_letter == answer
        correct += is_correct
        results.append((prompt, output.strip(), answer, output_letter, is_correct))

    accuracy = correct / len(dataset) * 100
    return f"Accuracy: {accuracy:.2f}%, out of {len(dataset)} samples", results

def run(model_id, sample_count, config_name):
    score, details = evaluate(model_id, sample_count, config_name)
    formatted = "\n\n".join([
        f"### Question:\n{q}\n\n**Model Answer:** {o}\n**Expected:** {a}\n**Predicted:** {g}\n**Correct:** {c}"
        for q, o, a, g, c in details
    ])
    return score, formatted

def save_text(text):
    return "evaluation_results.txt", text

with gr.Blocks(css="body {font-family: Inter, sans-serif; padding: 1em; max-width: 900px; margin: auto;}", analytics_enabled=False) as demo:
    gr.Markdown("""
    # πŸ€– LLM Benchmark Evaluator

    Currently, only **MMLU** (`cais/mmlu`) is available for evaluation.
    **MMLU-Pro** and **Humanity's Last Exam** will be coming soon.

    Enter your model ID, pick MMLU, choose a subject, and hit evaluate.
    """)

    with gr.Row():
        model_id = gr.Textbox(label="Your Hugging Face Model ID", placeholder="e.g., your-org/your-model")
        config_name = gr.Dropdown(
            label="Choose MMLU Subject",
            choices=[
                "abstract_algebra", "anatomy", "astronomy", "business_ethics", "college_biology",
                "college_chemistry", "college_computer_science", "college_mathematics", "college_medicine",
                "college_physics", "computer_security", "econometrics", "electrical_engineering",
                "elementary_mathematics", "formal_logic", "global_facts", "high_school_biology",
                "high_school_chemistry", "high_school_computer_science", "high_school_european_history",
                "high_school_geography", "high_school_government_and_politics", "high_school_macroeconomics",
                "high_school_microeconomics", "high_school_physics", "high_school_psychology",
                "high_school_statistics", "high_school_us_history", "high_school_world_history", "human_aging",
                "human_sexuality", "international_law", "jurisprudence", "logical_fallacies", "machine_learning",
                "management", "marketing", "medical_genetics", "miscellaneous", "moral_disputes",
                "moral_scenarios", "nutrition", "philosophy", "prehistory", "professional_accounting",
                "professional_law", "professional_medicine", "professional_psychology", "public_relations",
                "security_studies", "sociology", "us_foreign_policy", "virology", "world_religions"
            ],
            value="college_mathematics"
        )
        sample_count = gr.Slider(label="Number of Samples", minimum=1, maximum=100, value=10, step=1)

    run_button = gr.Button("πŸš€ Run Evaluation")
    acc_output = gr.Textbox(label="Benchmark Accuracy", interactive=False)
    detail_output = gr.Textbox(label="Evaluation Details", lines=20, interactive=False)
    download_button = gr.Button("πŸ“₯ Download Full Evaluation")

    run_button.click(run, inputs=[model_id, sample_count, config_name], outputs=[acc_output, detail_output])
    download_button.click(save_text, inputs=detail_output, outputs=gr.File())

demo.launch()