import os
import gradio as gr
import spaces
from infer_rvc_python import BaseLoader
import random
import logging
import time
import soundfile as sf
from infer_rvc_python.main import download_manager
import zipfile
import edge_tts
import asyncio
import librosa
import traceback
import soundfile as sf
from pedalboard import Pedalboard, Reverb, Compressor, HighpassFilter
from pedalboard.io import AudioFile
from pydub import AudioSegment
import noisereduce as nr
import numpy as np
import urllib.request
import shutil
import threading
logging.getLogger("infer_rvc_python").setLevel(logging.ERROR)
converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None)
title = "
RVC Emu Zero"
description = "您必须复制这个 Space 并以 ZeroGPU 规格构建才能按照预期使用!
仅供学术使用!这是一个 Project SEKAI 里的角色 Emu Otori 的 RVC 变声器。注意:本 space 和所使用的模型均在相关学术研究框架下进行,所造成的一切后果与本项目的开发者无关。本项目运行在 ZeroGPU 上,修改自 r3gm/rvc_zero"
description_en = "You must copy this Space and build with ZeroGPU specs to use it as expected!
For academic use only! This is an RVC voice changer for the character Emu Otori from Project SEKAI. Note: Both this space and the models used are conducted within the framework of relevant academic research. Any consequences arising from this are not the responsibility of the developers of this project. This project runs on ZeroGPU and is modified from r3gm/rvc_zero."
theme = "NoCrypt/miku"
PITCH_ALGO_OPT = [
"pm",
"harvest",
"crepe",
"rmvpe",
"rmvpe+",
]
def find_files(directory):
file_paths = []
for filename in os.listdir(directory):
# Check if the file has the desired extension
if filename.endswith('.pth') or filename.endswith('.zip') or filename.endswith('.index'):
# If yes, add the file path to the list
file_paths.append(os.path.join(directory, filename))
return file_paths
def unzip_in_folder(my_zip, my_dir):
with zipfile.ZipFile(my_zip) as zip:
for zip_info in zip.infolist():
if zip_info.is_dir():
continue
zip_info.filename = os.path.basename(zip_info.filename)
zip.extract(zip_info, my_dir)
def find_my_model(a_, b_):
if a_ is None or a_.endswith(".pth"):
return a_, b_
txt_files = []
for base_file in [a_, b_]:
if base_file is not None and base_file.endswith(".txt"):
txt_files.append(base_file)
directory = os.path.dirname(a_)
for txt in txt_files:
with open(txt, 'r') as file:
first_line = file.readline()
download_manager(
url=first_line.strip(),
path=directory,
extension="",
)
for f in find_files(directory):
if f.endswith(".zip"):
unzip_in_folder(f, directory)
model = None
index = None
end_files = find_files(directory)
for ff in end_files:
if ff.endswith(".pth"):
model = os.path.join(directory, ff)
gr.Info(f"Model found: {ff}")
if ff.endswith(".index"):
index = os.path.join(directory, ff)
gr.Info(f"Index found: {ff}")
if not model:
gr.Error(f"Model not found in: {end_files}")
if not index:
gr.Warning("Index not found")
return model, index
def get_file_size(url):
if "huggingface" not in url:
raise ValueError("Only downloads from Hugging Face are allowed")
try:
with urllib.request.urlopen(url) as response:
info = response.info()
content_length = info.get("Content-Length")
file_size = int(content_length)
if file_size > 500000000:
raise ValueError("The file is too large. You can only download files up to 500 MB in size.")
except Exception as e:
raise e
def clear_files(directory):
time.sleep(15)
print(f"Clearing files: {directory}.")
shutil.rmtree(directory)
def get_my_model(url_data):
if not url_data:
return None, None
if "," in url_data:
a_, b_ = url_data.split()
a_, b_ = a_.strip().replace("/blob/", "/resolve/"), b_.strip().replace("/blob/", "/resolve/")
else:
a_, b_ = url_data.strip().replace("/blob/", "/resolve/"), None
out_dir = "downloads"
folder_download = str(random.randint(1000, 9999))
directory = os.path.join(out_dir, folder_download)
os.makedirs(directory, exist_ok=True)
try:
get_file_size(a_)
if b_:
get_file_size(b_)
valid_url = [a_] if not b_ else [a_, b_]
for link in valid_url:
download_manager(
url=link,
path=directory,
extension="",
)
for f in find_files(directory):
if f.endswith(".zip"):
unzip_in_folder(f, directory)
model = None
index = None
end_files = find_files(directory)
for ff in end_files:
if ff.endswith(".pth"):
model = ff
gr.Info(f"Model found: {ff}")
if ff.endswith(".index"):
index = ff
gr.Info(f"Index found: {ff}")
if not model:
raise ValueError(f"Model not found in: {end_files}")
if not index:
gr.Warning("Index not found")
else:
index = os.path.abspath(index)
return os.path.abspath(model), index
except Exception as e:
raise e
finally:
# time.sleep(10)
# shutil.rmtree(directory)
t = threading.Thread(target=clear_files, args=(directory,))
t.start()
def add_audio_effects(audio_list):
print("Audio effects")
result = []
for audio_path in audio_list:
try:
output_path = f'{os.path.splitext(audio_path)[0]}_effects.wav'
# Initialize audio effects plugins
board = Pedalboard(
[
HighpassFilter(),
Compressor(ratio=4, threshold_db=-15),
Reverb(room_size=0.10, dry_level=0.8, wet_level=0.2, damping=0.7)
]
)
with AudioFile(audio_path) as f:
with AudioFile(output_path, 'w', f.samplerate, f.num_channels) as o:
# Read one second of audio at a time, until the file is empty:
while f.tell() < f.frames:
chunk = f.read(int(f.samplerate))
effected = board(chunk, f.samplerate, reset=False)
o.write(effected)
result.append(output_path)
except Exception as e:
traceback.print_exc()
print(f"Error noisereduce: {str(e)}")
result.append(audio_path)
return result
def apply_noisereduce(audio_list):
# https://github.com/sa-if/Audio-Denoiser
print("Noice reduce")
result = []
for audio_path in audio_list:
out_path = f'{os.path.splitext(audio_path)[0]}_noisereduce.wav'
try:
# Load audio file
audio = AudioSegment.from_file(audio_path)
# Convert audio to numpy array
samples = np.array(audio.get_array_of_samples())
# Reduce noise
reduced_noise = nr.reduce_noise(samples, sr=audio.frame_rate, prop_decrease=0.6)
# Convert reduced noise signal back to audio
reduced_audio = AudioSegment(
reduced_noise.tobytes(),
frame_rate=audio.frame_rate,
sample_width=audio.sample_width,
channels=audio.channels
)
# Save reduced audio to file
reduced_audio.export(out_path, format="wav")
result.append(out_path)
except Exception as e:
traceback.print_exc()
print(f"Error noisereduce: {str(e)}")
result.append(audio_path)
return result
@spaces.GPU()
def convert_now(audio_files, random_tag, converter):
return converter(
audio_files,
random_tag,
overwrite=False,
parallel_workers=8
)
def run(
audio_files,
file_m,
pitch_alg,
pitch_lvl,
file_index,
index_inf,
r_m_f,
e_r,
c_b_p,
active_noise_reduce,
audio_effects,
):
if not audio_files:
raise ValueError("请上传音频文件")
if isinstance(audio_files, str):
audio_files = [audio_files]
try:
duration_base = librosa.get_duration(filename=audio_files[0])
print("Duration:", duration_base)
except Exception as e:
print(e)
if file_m is not None and file_m.endswith(".txt"):
file_m, file_index = find_my_model(file_m, file_index)
print(file_m, file_index)
random_tag = "USER_"+str(random.randint(10000000, 99999999))
converter.apply_conf(
tag=random_tag,
file_model=file_m,
pitch_algo=pitch_alg,
pitch_lvl=pitch_lvl,
file_index=file_index,
index_influence=index_inf,
respiration_median_filtering=r_m_f,
envelope_ratio=e_r,
consonant_breath_protection=c_b_p,
resample_sr=44100 if audio_files[0].endswith('.mp3') else 0,
)
time.sleep(0.1)
result = convert_now(audio_files, random_tag, converter)
if active_noise_reduce:
result = apply_noisereduce(result)
if audio_effects:
result = add_audio_effects(result)
return result
def audio_conf():
return gr.File(
label="音频文件",
file_count="multiple",
type="filepath",
container=True,
)
def model_conf():
return gr.File(
label="模型文件",
type="filepath",
value="./emu_v2.pth",
height=130,
)
def pitch_algo_conf():
return gr.Dropdown(
PITCH_ALGO_OPT,
value=PITCH_ALGO_OPT[4],
label="音调算法",
visible=True,
interactive=True,
)
def pitch_lvl_conf():
return gr.Slider(
label="变音等级",
minimum=-24,
maximum=24,
step=1,
value=0,
visible=True,
interactive=True,
)
def index_conf():
return gr.File(
label="索引文件",
type="filepath",
value="./emu_v2.index",
height=130,
)
def index_inf_conf():
return gr.Slider(
minimum=0,
maximum=1,
label="索引强度",
value=0.75,
)
def respiration_filter_conf():
return gr.Slider(
minimum=0,
maximum=7,
label="呼吸中值过滤",
value=3,
step=1,
interactive=True,
)
def envelope_ratio_conf():
return gr.Slider(
minimum=0,
maximum=1,
label="包络线使用比例",
value=0.25,
interactive=True,
)
def consonant_protec_conf():
return gr.Slider(
minimum=0,
maximum=0.5,
label="辅音呼吸保护",
value=0.5,
interactive=True,
)
def button_conf():
return gr.Button(
"推理",
variant="primary",
)
def output_conf():
return gr.File(
label="结果",
file_count="multiple",
interactive=False,
)
def active_tts_conf():
return gr.Checkbox(
False,
label="TTS",
# info="",
container=False,
)
def tts_voice_conf():
return gr.Dropdown(
label="语音选择",
choices=voices,
visible=False,
value="en-US-EmmaMultilingualNeural-Female",
)
def tts_text_conf():
return gr.Textbox(
value="",
placeholder="在这里输入文字...",
label="文本",
visible=False,
lines=3,
)
def tts_button_conf():
return gr.Button(
"执行TTS",
variant="secondary",
visible=False,
)
def tts_play_conf():
return gr.Checkbox(
False,
label="自动播放TTS声音",
# info="",
container=False,
visible=False,
)
def sound_gui():
return gr.Audio(
value=None,
type="filepath",
label="TTS声音",
# format="mp3",
autoplay=True,
visible=False,
)
def denoise_conf():
return gr.Checkbox(
False,
label="降噪",
# info="",
container=False,
visible=True,
)
def effects_conf():
return gr.Checkbox(
False,
label="去混响",
# info="",
container=False,
visible=True,
)
def infer_tts_audio(tts_voice, tts_text, play_tts):
out_dir = "output"
folder_tts = "USER_"+str(random.randint(10000, 99999))
os.makedirs(out_dir, exist_ok=True)
os.makedirs(os.path.join(out_dir, folder_tts), exist_ok=True)
out_path = os.path.join(out_dir, folder_tts, "tts.mp3")
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(out_path))
if play_tts:
return [out_path], out_path
return [out_path], None
def show_components_tts(value_active):
return gr.update(
visible=value_active
), gr.update(
visible=value_active
), gr.update(
visible=value_active
), gr.update(
visible=value_active
)
def down_active_conf():
return gr.Checkbox(
False,
label="URL-to-Model",
# info="",
container=False,
)
def down_url_conf():
return gr.Textbox(
value="",
placeholder="Write the url here...",
label="Enter URL",
visible=False,
lines=1,
)
def down_button_conf():
return gr.Button(
"Process",
variant="secondary",
visible=False,
)
def show_components_down(value_active):
return gr.update(
visible=value_active
), gr.update(
visible=value_active
), gr.update(
visible=value_active
)
def get_gui(theme):
with gr.Blocks(theme=theme, delete_cache=(3200, 3200)) as app:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(description_en)
active_tts = active_tts_conf()
with gr.Row():
with gr.Column(scale=1):
tts_text = tts_text_conf()
with gr.Column(scale=2):
with gr.Row():
with gr.Column():
with gr.Row():
tts_voice = tts_voice_conf()
tts_active_play = tts_play_conf()
tts_button = tts_button_conf()
tts_play = sound_gui()
active_tts.change(
fn=show_components_tts,
inputs=[active_tts],
outputs=[tts_voice, tts_text, tts_button, tts_active_play],
)
aud = audio_conf()
# gr.HTML("
")
tts_button.click(
fn=infer_tts_audio,
inputs=[tts_voice, tts_text, tts_active_play],
outputs=[aud, tts_play],
)
with gr.Column():
with gr.Row():
model = model_conf()
indx = index_conf()
algo = pitch_algo_conf()
algo_lvl = pitch_lvl_conf()
indx_inf = index_inf_conf()
res_fc = respiration_filter_conf()
envel_r = envelope_ratio_conf()
const = consonant_protec_conf()
with gr.Row():
with gr.Column():
with gr.Row():
denoise_gui = denoise_conf()
effects_gui = effects_conf()
button_base = button_conf()
output_base = output_conf()
button_base.click(
run,
inputs=[
aud,
model,
algo,
algo_lvl,
indx,
indx_inf,
res_fc,
envel_r,
const,
denoise_gui,
effects_gui,
],
outputs=[output_base],
)
# gr.Examples(
# examples=[
# [
# ["./mnr.mp3"],
# "./emu_v2.pth",
# "rmvpe+",
# 0,
# "./emu_v2.index",
# 0.75,
# 3,
# 0.25,
# 0.50,
# ],
# ],
# fn=run,
# inputs=[
# aud,
# model,
# algo,
# algo_lvl,
# indx,
# indx_inf,
# res_fc,
# envel_r,
# const,
# ],
# outputs=[output_base],
# cache_examples=False,
# )
return app
if __name__ == "__main__":
tts_voice_list = asyncio.new_event_loop().run_until_complete(edge_tts.list_voices())
voices = sorted([f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list])
app = get_gui(theme)
app.queue(default_concurrency_limit=40)
app.launch(
max_threads=40,
share=False,
show_error=True,
quiet=False,
debug=False,
allowed_paths=["./downloads/"],
)