Spaces:
Running
Running
import os | |
import gradio as gr | |
import spaces | |
from infer_rvc_python import BaseLoader | |
import random | |
import logging | |
import time | |
import soundfile as sf | |
from infer_rvc_python.main import download_manager | |
import zipfile | |
import edge_tts | |
import asyncio | |
import librosa | |
import traceback | |
import soundfile as sf | |
from pedalboard import Pedalboard, Reverb, Compressor, HighpassFilter | |
from pedalboard.io import AudioFile | |
from pydub import AudioSegment | |
import noisereduce as nr | |
import numpy as np | |
import urllib.request | |
import shutil | |
import threading | |
logging.getLogger("infer_rvc_python").setLevel(logging.ERROR) | |
converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None) | |
title = "<center><strong><font size='7'>RVC Emu Zero</font></strong></center>" | |
description = "<b>您必须复制这个 Space 并以 ZeroGPU 规格构建才能按照预期使用!</b><br/>仅供学术使用!这是一个 Project SEKAI 里的角色 Emu Otori 的 RVC 变声器。注意:本 space 和所使用的模型均在相关学术研究框架下进行,所造成的一切后果与本项目的开发者无关。本项目运行在 ZeroGPU 上,修改自 r3gm/rvc_zero" | |
description_en = "<b>You must copy this Space and build with ZeroGPU specs to use it as expected!</b> <br/>For academic use only! This is an RVC voice changer for the character Emu Otori from Project SEKAI. Note: Both this space and the models used are conducted within the framework of relevant academic research. Any consequences arising from this are not the responsibility of the developers of this project. This project runs on ZeroGPU and is modified from r3gm/rvc_zero." | |
theme = "NoCrypt/miku" | |
PITCH_ALGO_OPT = [ | |
"pm", | |
"harvest", | |
"crepe", | |
"rmvpe", | |
"rmvpe+", | |
] | |
def find_files(directory): | |
file_paths = [] | |
for filename in os.listdir(directory): | |
# Check if the file has the desired extension | |
if filename.endswith('.pth') or filename.endswith('.zip') or filename.endswith('.index'): | |
# If yes, add the file path to the list | |
file_paths.append(os.path.join(directory, filename)) | |
return file_paths | |
def unzip_in_folder(my_zip, my_dir): | |
with zipfile.ZipFile(my_zip) as zip: | |
for zip_info in zip.infolist(): | |
if zip_info.is_dir(): | |
continue | |
zip_info.filename = os.path.basename(zip_info.filename) | |
zip.extract(zip_info, my_dir) | |
def find_my_model(a_, b_): | |
if a_ is None or a_.endswith(".pth"): | |
return a_, b_ | |
txt_files = [] | |
for base_file in [a_, b_]: | |
if base_file is not None and base_file.endswith(".txt"): | |
txt_files.append(base_file) | |
directory = os.path.dirname(a_) | |
for txt in txt_files: | |
with open(txt, 'r') as file: | |
first_line = file.readline() | |
download_manager( | |
url=first_line.strip(), | |
path=directory, | |
extension="", | |
) | |
for f in find_files(directory): | |
if f.endswith(".zip"): | |
unzip_in_folder(f, directory) | |
model = None | |
index = None | |
end_files = find_files(directory) | |
for ff in end_files: | |
if ff.endswith(".pth"): | |
model = os.path.join(directory, ff) | |
gr.Info(f"Model found: {ff}") | |
if ff.endswith(".index"): | |
index = os.path.join(directory, ff) | |
gr.Info(f"Index found: {ff}") | |
if not model: | |
gr.Error(f"Model not found in: {end_files}") | |
if not index: | |
gr.Warning("Index not found") | |
return model, index | |
def get_file_size(url): | |
if "huggingface" not in url: | |
raise ValueError("Only downloads from Hugging Face are allowed") | |
try: | |
with urllib.request.urlopen(url) as response: | |
info = response.info() | |
content_length = info.get("Content-Length") | |
file_size = int(content_length) | |
if file_size > 500000000: | |
raise ValueError("The file is too large. You can only download files up to 500 MB in size.") | |
except Exception as e: | |
raise e | |
def clear_files(directory): | |
time.sleep(15) | |
print(f"Clearing files: {directory}.") | |
shutil.rmtree(directory) | |
def get_my_model(url_data): | |
if not url_data: | |
return None, None | |
if "," in url_data: | |
a_, b_ = url_data.split() | |
a_, b_ = a_.strip().replace("/blob/", "/resolve/"), b_.strip().replace("/blob/", "/resolve/") | |
else: | |
a_, b_ = url_data.strip().replace("/blob/", "/resolve/"), None | |
out_dir = "downloads" | |
folder_download = str(random.randint(1000, 9999)) | |
directory = os.path.join(out_dir, folder_download) | |
os.makedirs(directory, exist_ok=True) | |
try: | |
get_file_size(a_) | |
if b_: | |
get_file_size(b_) | |
valid_url = [a_] if not b_ else [a_, b_] | |
for link in valid_url: | |
download_manager( | |
url=link, | |
path=directory, | |
extension="", | |
) | |
for f in find_files(directory): | |
if f.endswith(".zip"): | |
unzip_in_folder(f, directory) | |
model = None | |
index = None | |
end_files = find_files(directory) | |
for ff in end_files: | |
if ff.endswith(".pth"): | |
model = ff | |
gr.Info(f"Model found: {ff}") | |
if ff.endswith(".index"): | |
index = ff | |
gr.Info(f"Index found: {ff}") | |
if not model: | |
raise ValueError(f"Model not found in: {end_files}") | |
if not index: | |
gr.Warning("Index not found") | |
else: | |
index = os.path.abspath(index) | |
return os.path.abspath(model), index | |
except Exception as e: | |
raise e | |
finally: | |
# time.sleep(10) | |
# shutil.rmtree(directory) | |
t = threading.Thread(target=clear_files, args=(directory,)) | |
t.start() | |
def add_audio_effects(audio_list): | |
print("Audio effects") | |
result = [] | |
for audio_path in audio_list: | |
try: | |
output_path = f'{os.path.splitext(audio_path)[0]}_effects.wav' | |
# Initialize audio effects plugins | |
board = Pedalboard( | |
[ | |
HighpassFilter(), | |
Compressor(ratio=4, threshold_db=-15), | |
Reverb(room_size=0.10, dry_level=0.8, wet_level=0.2, damping=0.7) | |
] | |
) | |
with AudioFile(audio_path) as f: | |
with AudioFile(output_path, 'w', f.samplerate, f.num_channels) as o: | |
# Read one second of audio at a time, until the file is empty: | |
while f.tell() < f.frames: | |
chunk = f.read(int(f.samplerate)) | |
effected = board(chunk, f.samplerate, reset=False) | |
o.write(effected) | |
result.append(output_path) | |
except Exception as e: | |
traceback.print_exc() | |
print(f"Error noisereduce: {str(e)}") | |
result.append(audio_path) | |
return result | |
def apply_noisereduce(audio_list): | |
# https://github.com/sa-if/Audio-Denoiser | |
print("Noice reduce") | |
result = [] | |
for audio_path in audio_list: | |
out_path = f'{os.path.splitext(audio_path)[0]}_noisereduce.wav' | |
try: | |
# Load audio file | |
audio = AudioSegment.from_file(audio_path) | |
# Convert audio to numpy array | |
samples = np.array(audio.get_array_of_samples()) | |
# Reduce noise | |
reduced_noise = nr.reduce_noise(samples, sr=audio.frame_rate, prop_decrease=0.6) | |
# Convert reduced noise signal back to audio | |
reduced_audio = AudioSegment( | |
reduced_noise.tobytes(), | |
frame_rate=audio.frame_rate, | |
sample_width=audio.sample_width, | |
channels=audio.channels | |
) | |
# Save reduced audio to file | |
reduced_audio.export(out_path, format="wav") | |
result.append(out_path) | |
except Exception as e: | |
traceback.print_exc() | |
print(f"Error noisereduce: {str(e)}") | |
result.append(audio_path) | |
return result | |
def convert_now(audio_files, random_tag, converter): | |
return converter( | |
audio_files, | |
random_tag, | |
overwrite=False, | |
parallel_workers=8 | |
) | |
def run( | |
audio_files, | |
file_m, | |
pitch_alg, | |
pitch_lvl, | |
file_index, | |
index_inf, | |
r_m_f, | |
e_r, | |
c_b_p, | |
active_noise_reduce, | |
audio_effects, | |
): | |
if not audio_files: | |
raise ValueError("请上传音频文件") | |
if isinstance(audio_files, str): | |
audio_files = [audio_files] | |
try: | |
duration_base = librosa.get_duration(filename=audio_files[0]) | |
print("Duration:", duration_base) | |
except Exception as e: | |
print(e) | |
if file_m is not None and file_m.endswith(".txt"): | |
file_m, file_index = find_my_model(file_m, file_index) | |
print(file_m, file_index) | |
random_tag = "USER_"+str(random.randint(10000000, 99999999)) | |
converter.apply_conf( | |
tag=random_tag, | |
file_model=file_m, | |
pitch_algo=pitch_alg, | |
pitch_lvl=pitch_lvl, | |
file_index=file_index, | |
index_influence=index_inf, | |
respiration_median_filtering=r_m_f, | |
envelope_ratio=e_r, | |
consonant_breath_protection=c_b_p, | |
resample_sr=44100 if audio_files[0].endswith('.mp3') else 0, | |
) | |
time.sleep(0.1) | |
result = convert_now(audio_files, random_tag, converter) | |
if active_noise_reduce: | |
result = apply_noisereduce(result) | |
if audio_effects: | |
result = add_audio_effects(result) | |
return result | |
def audio_conf(): | |
return gr.File( | |
label="音频文件", | |
file_count="multiple", | |
type="filepath", | |
container=True, | |
) | |
def model_conf(): | |
return gr.File( | |
label="模型文件", | |
type="filepath", | |
value="./emu_v2.pth", | |
height=130, | |
) | |
def pitch_algo_conf(): | |
return gr.Dropdown( | |
PITCH_ALGO_OPT, | |
value=PITCH_ALGO_OPT[4], | |
label="音调算法", | |
visible=True, | |
interactive=True, | |
) | |
def pitch_lvl_conf(): | |
return gr.Slider( | |
label="变音等级", | |
minimum=-24, | |
maximum=24, | |
step=1, | |
value=0, | |
visible=True, | |
interactive=True, | |
) | |
def index_conf(): | |
return gr.File( | |
label="索引文件", | |
type="filepath", | |
value="./emu_v2.index", | |
height=130, | |
) | |
def index_inf_conf(): | |
return gr.Slider( | |
minimum=0, | |
maximum=1, | |
label="索引强度", | |
value=0.75, | |
) | |
def respiration_filter_conf(): | |
return gr.Slider( | |
minimum=0, | |
maximum=7, | |
label="呼吸中值过滤", | |
value=3, | |
step=1, | |
interactive=True, | |
) | |
def envelope_ratio_conf(): | |
return gr.Slider( | |
minimum=0, | |
maximum=1, | |
label="包络线使用比例", | |
value=0.25, | |
interactive=True, | |
) | |
def consonant_protec_conf(): | |
return gr.Slider( | |
minimum=0, | |
maximum=0.5, | |
label="辅音呼吸保护", | |
value=0.5, | |
interactive=True, | |
) | |
def button_conf(): | |
return gr.Button( | |
"推理", | |
variant="primary", | |
) | |
def output_conf(): | |
return gr.File( | |
label="结果", | |
file_count="multiple", | |
interactive=False, | |
) | |
def active_tts_conf(): | |
return gr.Checkbox( | |
False, | |
label="TTS", | |
# info="", | |
container=False, | |
) | |
def tts_voice_conf(): | |
return gr.Dropdown( | |
label="语音选择", | |
choices=voices, | |
visible=False, | |
value="en-US-EmmaMultilingualNeural-Female", | |
) | |
def tts_text_conf(): | |
return gr.Textbox( | |
value="", | |
placeholder="在这里输入文字...", | |
label="文本", | |
visible=False, | |
lines=3, | |
) | |
def tts_button_conf(): | |
return gr.Button( | |
"执行TTS", | |
variant="secondary", | |
visible=False, | |
) | |
def tts_play_conf(): | |
return gr.Checkbox( | |
False, | |
label="自动播放TTS声音", | |
# info="", | |
container=False, | |
visible=False, | |
) | |
def sound_gui(): | |
return gr.Audio( | |
value=None, | |
type="filepath", | |
label="TTS声音", | |
# format="mp3", | |
autoplay=True, | |
visible=False, | |
) | |
def denoise_conf(): | |
return gr.Checkbox( | |
False, | |
label="降噪", | |
# info="", | |
container=False, | |
visible=True, | |
) | |
def effects_conf(): | |
return gr.Checkbox( | |
False, | |
label="去混响", | |
# info="", | |
container=False, | |
visible=True, | |
) | |
def infer_tts_audio(tts_voice, tts_text, play_tts): | |
out_dir = "output" | |
folder_tts = "USER_"+str(random.randint(10000, 99999)) | |
os.makedirs(out_dir, exist_ok=True) | |
os.makedirs(os.path.join(out_dir, folder_tts), exist_ok=True) | |
out_path = os.path.join(out_dir, folder_tts, "tts.mp3") | |
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(out_path)) | |
if play_tts: | |
return [out_path], out_path | |
return [out_path], None | |
def show_components_tts(value_active): | |
return gr.update( | |
visible=value_active | |
), gr.update( | |
visible=value_active | |
), gr.update( | |
visible=value_active | |
), gr.update( | |
visible=value_active | |
) | |
def down_active_conf(): | |
return gr.Checkbox( | |
False, | |
label="URL-to-Model", | |
# info="", | |
container=False, | |
) | |
def down_url_conf(): | |
return gr.Textbox( | |
value="", | |
placeholder="Write the url here...", | |
label="Enter URL", | |
visible=False, | |
lines=1, | |
) | |
def down_button_conf(): | |
return gr.Button( | |
"Process", | |
variant="secondary", | |
visible=False, | |
) | |
def show_components_down(value_active): | |
return gr.update( | |
visible=value_active | |
), gr.update( | |
visible=value_active | |
), gr.update( | |
visible=value_active | |
) | |
def get_gui(theme): | |
with gr.Blocks(theme=theme, delete_cache=(3200, 3200)) as app: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
gr.Markdown(description_en) | |
active_tts = active_tts_conf() | |
with gr.Row(): | |
with gr.Column(scale=1): | |
tts_text = tts_text_conf() | |
with gr.Column(scale=2): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
tts_voice = tts_voice_conf() | |
tts_active_play = tts_play_conf() | |
tts_button = tts_button_conf() | |
tts_play = sound_gui() | |
active_tts.change( | |
fn=show_components_tts, | |
inputs=[active_tts], | |
outputs=[tts_voice, tts_text, tts_button, tts_active_play], | |
) | |
aud = audio_conf() | |
# gr.HTML("<hr>") | |
tts_button.click( | |
fn=infer_tts_audio, | |
inputs=[tts_voice, tts_text, tts_active_play], | |
outputs=[aud, tts_play], | |
) | |
with gr.Column(): | |
with gr.Row(): | |
model = model_conf() | |
indx = index_conf() | |
algo = pitch_algo_conf() | |
algo_lvl = pitch_lvl_conf() | |
indx_inf = index_inf_conf() | |
res_fc = respiration_filter_conf() | |
envel_r = envelope_ratio_conf() | |
const = consonant_protec_conf() | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
denoise_gui = denoise_conf() | |
effects_gui = effects_conf() | |
button_base = button_conf() | |
output_base = output_conf() | |
button_base.click( | |
run, | |
inputs=[ | |
aud, | |
model, | |
algo, | |
algo_lvl, | |
indx, | |
indx_inf, | |
res_fc, | |
envel_r, | |
const, | |
denoise_gui, | |
effects_gui, | |
], | |
outputs=[output_base], | |
) | |
# gr.Examples( | |
# examples=[ | |
# [ | |
# ["./mnr.mp3"], | |
# "./emu_v2.pth", | |
# "rmvpe+", | |
# 0, | |
# "./emu_v2.index", | |
# 0.75, | |
# 3, | |
# 0.25, | |
# 0.50, | |
# ], | |
# ], | |
# fn=run, | |
# inputs=[ | |
# aud, | |
# model, | |
# algo, | |
# algo_lvl, | |
# indx, | |
# indx_inf, | |
# res_fc, | |
# envel_r, | |
# const, | |
# ], | |
# outputs=[output_base], | |
# cache_examples=False, | |
# ) | |
return app | |
if __name__ == "__main__": | |
tts_voice_list = asyncio.new_event_loop().run_until_complete(edge_tts.list_voices()) | |
voices = sorted([f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]) | |
app = get_gui(theme) | |
app.queue(default_concurrency_limit=40) | |
app.launch( | |
max_threads=40, | |
share=False, | |
show_error=True, | |
quiet=False, | |
debug=False, | |
allowed_paths=["./downloads/"], | |
) |