import os import argparse import traceback import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S') import spaces import gradio as gr from conversation_public import default_conversation auth_token = os.environ.get("TOKEN_FROM_SECRET") ########################################## # LLM part ########################################## from transformers import AutoProcessor, AutoTokenizer, TextIteratorStreamer from vllm import LLM, SamplingParams from qwen_vl_utils import process_vision_info from threading import Thread # === Prompts === SYSTEM_PROMPT_LLM = "You are a helpful assistant." SYSTEM_PROMPT_CAP = "You are given an image and a relevant question. Based on the query, please describe the image in details. Do not try to answer the question." CAPTION_PROMPT = "Question: {}\nPlease describe the image. DO NOT try to answer the question!" LLM_PROMPT = """In the following text, you will receive a detailed caption of an image and a relevant question. In addition, you will be provided with a tentative model response. You goal is to answer the question using these information.\n\n### The detailed caption of the provided image: {}\n\n### Note that the caption might contain incorrect solutions, do not be misguided by them.\n\n### A problem to be solved: {}\n\n### A tentative model response: {}\n\n### Note that the above tentative response might be inaccurate (due to calculation errors, incorrect logic/reasoning and so on), under such a case, please ignore it and give your own solutions. However, if you do not have enough evidence to show it is wrong, please output the tentative response.""" # === Initialize Models === MLLM_MODEL_PATH = "Qwen/Qwen2.5-VL-7B-Instruct" LLM_MODEL_PATH = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B" processor = AutoProcessor.from_pretrained(MLLM_MODEL_PATH) tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_PATH) mllm = LLM(model=MLLM_MODEL_PATH, tensor_parallel_size=1, gpu_memory_utilization=0.8, device='cuda:0', dtype="bfloat16", limit_mm_per_prompt={"image": 1}) llm = LLM(model=LLM_MODEL_PATH, tensor_parallel_size=1, gpu_memory_utilization=0.8, device='cuda:0', dtype="bfloat16") mllm_sampling = SamplingParams(temperature=0, max_tokens=8192) llm_sampling = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=8192) # === Build Prompts === def build_messages(image_path, question): cap_msgs = [ {"role": "system", "content": SYSTEM_PROMPT_CAP}, {"role": "user", "content": [{"type": "image", "image": image_path}, {"type": "text", "text": CAPTION_PROMPT.format(question)}]} ] qa_msgs = [ {"role": "user", "content": [{"type": "image", "image": image_path}, {"type": "text", "text": question + " Please think step by step. The final answer MUST BE put in \\boxed{}."}]} ] return cap_msgs, qa_msgs # === Run Captioning and QA === def run_mllm_tentative(image_tensor, cap_prompt, qa_prompt): qa_output = mllm.generate([{"multi_modal_data": {"image": image_tensor}, "prompt": qa_prompt[0]}], sampling_params=mllm_sampling) return qa_output[0].outputs[0].text def run_mllm_caption(image_tensor, cap_prompt, qa_prompt): cap_output = mllm.generate([{"multi_modal_data": {"image": image_tensor}, "prompt": cap_prompt[0]}], sampling_params=mllm_sampling) return cap_output[0].outputs[0].text # === Final Reasoning Step === def run_llm_reasoning(caption, question, answer): messages = [ {"role": "system", "content": SYSTEM_PROMPT_LLM}, {"role": "user", "content": LLM_PROMPT.format(caption, question, answer)} ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) output = llm.generate([{"prompt": prompt}], sampling_params=llm_sampling) return output[0].outputs[0].text ########################################## # Gradio part ########################################## no_change_btn = gr.Button() enable_btn = gr.Button(interactive=True) disable_btn = gr.Button(interactive=False) server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**" server_oom_msg = "**OUT OF GPU MEMORY DETECTED. PLEASE DECREASE THE MAX OUTPUT TOKENS AND REGENERATE.**" def load_demo_refresh_model_list(): logging.info(f"load_demo.") state = default_conversation.copy() return state def regenerate(state, image_process_mode): logging.info(f"regenerate.") state.messages[-1][-1] = None prev_human_msg = state.messages[-2] if type(prev_human_msg[1]) in (tuple, list): prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode, *prev_human_msg[1][3:]) state.skip_next = False return (state, state.to_gradio_chatbot_public(), "", None) + (disable_btn,) * 2 def clear_history(): logging.info(f"clear_history.") state = default_conversation.copy() return (state, state.to_gradio_chatbot_public(), "", None) + (disable_btn,) * 2 ############ # Show prompt in the chatbot # Input: [state, textbox, imagebox, image_process_mode] # Return: [state, chatbot, textbox, imagebox] + btn_list ############ def add_text(state, text, image, image_process_mode): # Input legality checking logging.info(f"add_text. len: {len(text)}") if len(text) <= 0 or image is None: state.skip_next = True return (state, state.to_gradio_chatbot_public(), "", None) + (no_change_btn,) * 2 # Deal with image inputs if image is not None: text = (text, image, image_process_mode, None) # Single round only state = default_conversation.copy() state.append_message(state.roles[0], text) state.skip_next = False logging.info(str(state.messages)) return (state, state.to_gradio_chatbot_public(), "") + (disable_btn,) * 2 ############ # Get response # Input: [state] # Return: [state, chatbot] + btn_list ############ @spaces.GPU def http_bot(state): logging.info(f"http_bot.") if state.skip_next: yield (state, state.to_gradio_chatbot_public()) + (no_change_btn,) * 2 return # Retrive prompt prompt = state.messages[-1][0][0] all_images = state.get_images(return_pil=True)[0] pload = {"prompt": prompt, "images": f'List of {len(state.get_images())} images: {all_images}'} logging.info(f"==== request ====\n{pload}") # Construct prompt cap_msgs, qa_msgs = build_messages(all_images, prompt) cap_prompt = processor.apply_chat_template([cap_msgs], tokenize=False, add_generation_prompt=True) qa_prompt = processor.apply_chat_template([qa_msgs], tokenize=False, add_generation_prompt=True) image_tensor, _ = process_vision_info(cap_msgs) tentative_answer = run_mllm_tentative(image_tensor, cap_prompt, qa_prompt) state.append_message(state.roles[1], "# Tentative Response\n\n" + tentative_answer) logging.info("# Tentative Response\n\n" + tentative_answer) yield (state, state.to_gradio_chatbot_public()) + (disable_btn,) * 2 caption_text = run_mllm_caption(image_tensor, cap_prompt, qa_prompt) state.append_message(state.roles[1], "# Caption\n\n" + caption_text) logging.info("# Caption\n\n" + caption_text) yield (state, state.to_gradio_chatbot_public()) + (disable_btn,) * 2 final_answer = run_llm_reasoning(caption_text, QUESTION, tentative_answer) state.append_message(state.roles[1], "# Final Response\n\n" + final_answer) logging.info("# Final Response\n\n" + final_answer) yield (state, state.to_gradio_chatbot_public()) + (enable_btn,) * 2 ############ # Layout Markdown ############ title_markdown = ("""
1. RACRO is designed for multi-modal reasoning, and thus, image inputs are ALWAYS necessary!
2. Models are deployed with vLLM, which unfortunately, still does not support streaming outputs for MLLMs.
@article{gou2025perceptual,
author = {Gou, Yunhao and Chen, Kai and Liu, Zhili and Hong, Lanqing and Jin, Xin and Li, Zhenguo and Kwok, James T. and Zhang, Yu},
title = {Perceptual Decoupling for Scalable Multi-modal Reasoning via Reward-Optimized Captioning},
journal = {arXiv preprint arXiv:2506.04559},
year = {2025},
}
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
.message-row img {
margin: 0px !important;
}
.avatar-container img {
padding: 0px !important;
}
"""
############
# Layout Demo
############
def build_demo(embed_mode):
textbox = gr.Textbox(label="Text", show_label=False, placeholder="Enter text and then click đŦ Chat to talk with me ^v^", container=False)
with gr.Blocks(title="RACRO", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
if not embed_mode:
gr.HTML(title_markdown)
##############
# Chatbot
##############
with gr.Row(equal_height=True):
with gr.Column(scale=1):
imagebox = gr.Image(type="pil", label="Image")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
gr.Examples(examples=[
["./examples/demo_example.png", "When the canister is momentarily stopped by the spring, by what distance $d$ is the spring compressed?"],
], inputs=[imagebox, textbox], label='Examples')
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="RACRO Chatbot",
layout="bubble",
avatar_images=["examples/user_avator.png", "examples/icon_256.png"]
)
textbox.render()
with gr.Row(elem_id="buttons") as button_row:
submit_btn = gr.Button(value="đŦ Chat", variant="primary")
# stop_btn = gr.Button(value="âšī¸ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="đ Regenerate", interactive=False)
clear_btn = gr.Button(value="đī¸ Clear", interactive=False)
if not embed_mode:
gr.Markdown(learn_more_markdown)
# Register listeners
btn_list = [regenerate_btn, clear_btn]
regenerate_btn.click(
regenerate,
[state, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list
).then(
http_bot,
[state],
[state, chatbot] + btn_list,
)
clear_btn.click(
clear_history,
None,
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
)
# probably mean press enter
textbox.submit(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
).then(
http_bot,
[state],
[state, chatbot] + btn_list,
)
submit_btn.click(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list
).then(
http_bot,
[state],
[state, chatbot] + btn_list,
)
##############
# Demo loading
##############
demo.load(
load_demo_refresh_model_list,
None,
[state],
queue=False
)
return demo
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--embed", action="store_true")
args = parser.parse_args()
demo = build_demo(args.embed)
demo.queue(
max_size=10,
api_open=False
).launch(
favicon_path="./examples/icon_256.png",
allowed_paths=["/"],
share=args.share
)