Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,20 @@
|
|
1 |
-
|
2 |
-
model1 = AutoModelForSequenceClassification.from_pretrained("Emma0123/fine_tuned_model")
|
3 |
|
4 |
-
|
5 |
-
|
|
|
6 |
|
7 |
-
#
|
8 |
-
input_text = input()
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
outputs = model1(**inputs)
|
13 |
-
predictions = torch.argmax(outputs.logits, dim=1).item()
|
14 |
|
15 |
-
#
|
16 |
-
if
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
predictions2 = torch.argmax(outputs2.logits, dim=1).item()
|
21 |
-
print("Second model prediction:", predictions2)
|
22 |
else:
|
23 |
-
|
|
|
|
1 |
+
from transformers import pipeline
|
|
|
2 |
|
3 |
+
# 初始化两个模型
|
4 |
+
pipe1 = pipeline("text-classification", model="Emma0123/fine_tuned_model")
|
5 |
+
pipe2 = pipeline("text-classification", model="jonas/roberta-base-finetuned-sdg")
|
6 |
|
7 |
+
# 获取用户输入的文本
|
8 |
+
input_text = input("Please enter the text: ")
|
9 |
|
10 |
+
# 使用第一个模型进行预测
|
11 |
+
result1 = pipe1(input_text)
|
|
|
|
|
12 |
|
13 |
+
# 判断第一个模型的输出结果
|
14 |
+
if result1[0]['label'] == 'LABEL_1': # 根据您的模型实际返回的标签进行修改
|
15 |
+
# 如果输出结果为1(或者对应的标签),将输入文本传递给第二个模型
|
16 |
+
result2 = pipe2(input_text)
|
17 |
+
print(result2)
|
|
|
|
|
18 |
else:
|
19 |
+
# 如果输出结果为0(或者对应的标签),打印提示信息
|
20 |
+
print("This content is unrelated to Environment.")
|