Emily Witko commited on
Commit
45c8733
·
1 Parent(s): 4e07416

Restored topic modeling, keyword extraction, and summarization

Browse files
Files changed (1) hide show
  1. app.py +14 -2
app.py CHANGED
@@ -77,7 +77,19 @@ def analyze_demographics(file):
77
 
78
  def analyze_why_columns(file):
79
  df = pd.read_excel(file.name)
80
- why_columns = [col for col in df.columns if col.startswith("Why")]
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
  results = {}
83
 
@@ -110,7 +122,7 @@ def analyze_why_columns(file):
110
 
111
  # Keyword Extraction
112
  combined_text = " ".join(column_data)
113
- word_list = re.findall(r"\b\w+\b", combined_text.lower())
114
  bigram_vectorizer = CountVectorizer(ngram_range=(2, 3), stop_words='english')
115
  bigram_counts = bigram_vectorizer.fit_transform([combined_text])
116
  bigram_features = bigram_vectorizer.get_feature_names_out()
 
77
 
78
  def analyze_why_columns(file):
79
  df = pd.read_excel(file.name)
80
+
81
+ # Map column names to new labels
82
+ column_label_map = {
83
+ "Why? (optional)": "HF NPS Why?",
84
+ "Why? (optional.1)": "Support Team NPS Why?",
85
+ "Why? (optional.2)": "Productivity Why?"
86
+ }
87
+
88
+ # Rename columns in the DataFrame
89
+ df = df.rename(columns=column_label_map)
90
+
91
+ # Get the renamed columns that start with "Why"
92
+ why_columns = [col for col in df.columns if col in column_label_map.values()]
93
 
94
  results = {}
95
 
 
122
 
123
  # Keyword Extraction
124
  combined_text = " ".join(column_data)
125
+ word_list = re.findall(r"\\b\\w+\\b", combined_text.lower())
126
  bigram_vectorizer = CountVectorizer(ngram_range=(2, 3), stop_words='english')
127
  bigram_counts = bigram_vectorizer.fit_transform([combined_text])
128
  bigram_features = bigram_vectorizer.get_feature_names_out()