import streamlit as st import torch from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler from huggingface_hub import hf_hub_download from safetensors.torch import load_file # Model Path/Repo Information base = "stabilityai/stable-diffusion-xl-base-1.0" repo = "ByteDance/SDXL-Lightning" ckpt = "sdxl_lightning_4step_unet.safetensors" # Load model (Executed only once for efficiency) @st.cache_resource def load_sdxl_pipeline(): unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cpu", torch.float16) unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu")) pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cpu") pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") return pipe # Streamlit UI st.title("Image Generation") prompt = st.text_input("Enter your image prompt:") if st.button("Generate Image"): if not prompt: st.warning("Please enter a prompt.") else: pipe = load_sdxl_pipeline() # Load the pipeline from cache with torch.no_grad(): image = pipe(prompt).images[0] st.image(image) # GOOGLE_API_KEY = "" # genai.configure(api_key=GOOGLE_API_KEY) # model = genai.GenerativeModel('gemini-pro') # def add_to_json(goal): # try: # with open("test.json", "r") as file: # data = json.load(file) # except FileNotFoundError: # data = {"goals": []} # Create the file with an empty 'goals' list if it doesn't exist # new_item = {"Goal": goal} # data["goals"].append(new_item) # with open("test.json", "w") as file: # json.dump(data, file, indent=4) # def main(): # if prompt := st.chat_input("Hi, how can I help you?"): # goals_prompt = f"""Act as a personal assistant... {prompt} """ # completion = model.generate_content(goals_prompt) # add_to_json(prompt) # with st.chat_message("Assistant"): # st.write(completion.text) # # Display JSON Data # if st.button("Show JSON Data"): # with open("test.json", "r") as file: # data = json.load(file) # st.json(data) # Streamlit's way to display JSON # if __name__ == "__main__": # main()