Aaram / app.py
CosmoAI's picture
Update app.py
31ed165 verified
raw
history blame
2.4 kB
import streamlit as st
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
# Model Path/Repo Information
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors"
# Load model (Executed only once for efficiency)
@st.cache_resource
def load_sdxl_pipeline():
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cpu", torch.float32)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu"))
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float32, variant="fp16").to("cpu")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
return pipe
# Streamlit UI
st.title("Image Generation")
prompt = st.text_input("Enter your image prompt:")
if st.button("Generate Image"):
if not prompt:
st.warning("Please enter a prompt.")
else:
pipe = load_sdxl_pipeline() # Load the pipeline from cache
with torch.no_grad():
image = pipe(prompt).images[0]
st.image(image)
# GOOGLE_API_KEY = ""
# genai.configure(api_key=GOOGLE_API_KEY)
# model = genai.GenerativeModel('gemini-pro')
# def add_to_json(goal):
# try:
# with open("test.json", "r") as file:
# data = json.load(file)
# except FileNotFoundError:
# data = {"goals": []} # Create the file with an empty 'goals' list if it doesn't exist
# new_item = {"Goal": goal}
# data["goals"].append(new_item)
# with open("test.json", "w") as file:
# json.dump(data, file, indent=4)
# def main():
# if prompt := st.chat_input("Hi, how can I help you?"):
# goals_prompt = f"""Act as a personal assistant... {prompt} """
# completion = model.generate_content(goals_prompt)
# add_to_json(prompt)
# with st.chat_message("Assistant"):
# st.write(completion.text)
# # Display JSON Data
# if st.button("Show JSON Data"):
# with open("test.json", "r") as file:
# data = json.load(file)
# st.json(data) # Streamlit's way to display JSON
# if __name__ == "__main__":
# main()