Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app/config.py +11 -0
- app/main.py +32 -0
- app/models/recipe.py +11 -0
- app/services/recipe_generator.py +53 -0
app/config.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app/config.py
|
2 |
+
from pydantic_settings import BaseSettings
|
3 |
+
|
4 |
+
class Settings(BaseSettings):
|
5 |
+
MODEL_NAME: str = "your-model-name"
|
6 |
+
MAX_LENGTH: int = 512
|
7 |
+
TEMPERATURE: float = 0.7
|
8 |
+
TOP_P: float = 0.9
|
9 |
+
|
10 |
+
class Config:
|
11 |
+
env_file = ".env"
|
app/main.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app/main.py
|
2 |
+
from fastapi import FastAPI
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
+
from app.models.recipe import RecipeRequest, RecipeResponse
|
5 |
+
from app.services.recipe_generator import RecipeGenerator
|
6 |
+
|
7 |
+
app = FastAPI(title="Recipe Generation API")
|
8 |
+
|
9 |
+
# Configure CORS for Vercel frontend
|
10 |
+
app.add_middleware(
|
11 |
+
CORSMiddleware,
|
12 |
+
allow_origins=["*"], # Update this with your Vercel app URL in production
|
13 |
+
allow_credentials=True,
|
14 |
+
allow_methods=["*"],
|
15 |
+
allow_headers=["*"],
|
16 |
+
)
|
17 |
+
|
18 |
+
# Initialize recipe generator service
|
19 |
+
recipe_generator = RecipeGenerator()
|
20 |
+
|
21 |
+
@app.get("/")
|
22 |
+
async def root():
|
23 |
+
return {"message": "Recipe Generation API is running"}
|
24 |
+
|
25 |
+
@app.post("/generate-recipe", response_model=RecipeResponse)
|
26 |
+
async def generate_recipe(request: RecipeRequest):
|
27 |
+
recipe = await recipe_generator.generate(request.ingredients)
|
28 |
+
return RecipeResponse(
|
29 |
+
title=recipe["title"],
|
30 |
+
ingredients=recipe["ingredients"],
|
31 |
+
instructions=recipe["instructions"]
|
32 |
+
)
|
app/models/recipe.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app/models/recipe.py
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
class RecipeRequest(BaseModel):
|
6 |
+
ingredients: List[str]
|
7 |
+
|
8 |
+
class RecipeResponse(BaseModel):
|
9 |
+
title: str
|
10 |
+
ingredients: List[str]
|
11 |
+
instructions: List[str]
|
app/services/recipe_generator.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app/services/recipe_generator.py
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
class RecipeGenerator:
|
6 |
+
def __init__(self):
|
7 |
+
# Initialize your fine-tuned model and tokenizer
|
8 |
+
self.tokenizer = AutoTokenizer.from_pretrained("flax-community/t5-recipe-generation")
|
9 |
+
self.model = AutoModelForCausalLM.from_pretrained("flax-community/t5-recipe-generation")
|
10 |
+
|
11 |
+
async def generate(self, ingredients: List[str]):
|
12 |
+
# Format ingredients for input
|
13 |
+
input_text = f"Generate a recipe using these ingredients: {', '.join(ingredients)}"
|
14 |
+
|
15 |
+
# Tokenize and generate
|
16 |
+
inputs = self.tokenizer(input_text, return_tensors="pt", padding=True)
|
17 |
+
outputs = self.model.generate(
|
18 |
+
inputs.input_ids,
|
19 |
+
max_length=512,
|
20 |
+
num_return_sequences=1,
|
21 |
+
temperature=0.7,
|
22 |
+
top_p=0.9,
|
23 |
+
do_sample=True
|
24 |
+
)
|
25 |
+
|
26 |
+
# Decode and parse the generated recipe
|
27 |
+
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
|
29 |
+
# Parse the generated text into structured format
|
30 |
+
# This is a simple example - adjust based on your model's output format
|
31 |
+
lines = generated_text.split('\n')
|
32 |
+
title = lines[0]
|
33 |
+
ingredients_list = []
|
34 |
+
instructions_list = []
|
35 |
+
|
36 |
+
# Simple parsing logic - adjust based on your model's output format
|
37 |
+
current_section = None
|
38 |
+
for line in lines[1:]:
|
39 |
+
if "Ingredients:" in line:
|
40 |
+
current_section = "ingredients"
|
41 |
+
elif "Instructions:" in line:
|
42 |
+
current_section = "instructions"
|
43 |
+
elif line.strip():
|
44 |
+
if current_section == "ingredients":
|
45 |
+
ingredients_list.append(line.strip())
|
46 |
+
elif current_section == "instructions":
|
47 |
+
instructions_list.append(line.strip())
|
48 |
+
|
49 |
+
return {
|
50 |
+
"title": title,
|
51 |
+
"ingredients": ingredients_list,
|
52 |
+
"instructions": instructions_list
|
53 |
+
}
|