Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,100 +1,71 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
|
|
3 |
|
4 |
-
# Load model and tokenizer
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
generation_kwargs = {
|
11 |
-
"max_length": 512,
|
12 |
-
"min_length": 64,
|
13 |
-
"no_repeat_ngram_size": 3,
|
14 |
-
"do_sample": True,
|
15 |
-
"top_k": 60,
|
16 |
-
"top_p": 0.95
|
17 |
-
}
|
18 |
-
|
19 |
-
special_tokens = tokenizer.all_special_tokens
|
20 |
-
tokens_map = {
|
21 |
-
"<sep>": "--",
|
22 |
-
"<section>": "\n"
|
23 |
-
}
|
24 |
-
|
25 |
-
def skip_special_tokens(text, special_tokens):
|
26 |
-
for token in special_tokens:
|
27 |
-
text = text.replace(token, "")
|
28 |
-
return text
|
29 |
-
|
30 |
-
def target_postprocessing(texts, special_tokens):
|
31 |
-
if not isinstance(texts, list):
|
32 |
-
texts = [texts]
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
text = text.replace(k, v)
|
39 |
-
new_texts.append(text)
|
40 |
-
return new_texts
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
truncation=True
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
)
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
#
|
71 |
-
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
if ingredients:
|
76 |
-
items = [ingredients]
|
77 |
-
generated = generation_function(items)
|
78 |
-
for text in generated:
|
79 |
-
sections = text.split("\n")
|
80 |
-
for section in sections:
|
81 |
-
section = section.strip()
|
82 |
-
if section.startswith("title:"):
|
83 |
-
section = section.replace("title:", "")
|
84 |
-
headline = "TITLE"
|
85 |
-
elif section.startswith("ingredients:"):
|
86 |
-
section = section.replace("ingredients:", "")
|
87 |
-
headline = "INGREDIENTS"
|
88 |
-
elif section.startswith("directions:"):
|
89 |
-
section = section.replace("directions:", "")
|
90 |
-
headline = "DIRECTIONS"
|
91 |
-
|
92 |
-
if headline == "TITLE":
|
93 |
-
st.subheader(f"[{headline}]: {section.strip().capitalize()}")
|
94 |
-
else:
|
95 |
-
section_info = [f" - {i+1}: {info.strip().capitalize()}" for i, info in enumerate(section.split("--"))]
|
96 |
-
st.write(f"[{headline}]:")
|
97 |
-
st.write("\n".join(section_info))
|
98 |
-
st.write("-" * 130)
|
99 |
-
else:
|
100 |
-
st.warning("Please enter ingredients.")
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load the model and tokenizer with CPU optimization
|
6 |
+
@st.cache_resource
|
7 |
+
def load_model():
|
8 |
+
model_name = "flax-community/t5-recipe-generation"
|
9 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
10 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Explicitly set to CPU and use float32 to reduce memory usage
|
13 |
+
model = model.to('cpu').float()
|
14 |
+
|
15 |
+
return tokenizer, model
|
|
|
|
|
|
|
16 |
|
17 |
+
# Generate recipe function with CPU-friendly generation
|
18 |
+
def generate_recipe(ingredients, tokenizer, model, max_length=512):
|
19 |
+
# Prepare input
|
20 |
+
input_text = f"Generate recipe with: {ingredients}"
|
21 |
+
|
22 |
+
# Use torch no_grad to reduce memory consumption
|
23 |
+
with torch.no_grad():
|
24 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=max_length, truncation=True)
|
25 |
+
|
26 |
+
# Adjust generation parameters for faster CPU inference
|
27 |
+
output_ids = model.generate(
|
28 |
+
input_ids,
|
29 |
+
max_length=max_length,
|
30 |
+
num_return_sequences=1,
|
31 |
+
no_repeat_ngram_size=2,
|
32 |
+
num_beams=4, # Reduced beam search for faster CPU processing
|
33 |
+
early_stopping=True
|
34 |
+
)
|
35 |
+
|
36 |
+
# Decode and clean the output
|
37 |
+
recipe = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
38 |
+
return recipe
|
39 |
|
40 |
+
# Streamlit app
|
41 |
+
def main():
|
42 |
+
st.title("🍳 AI Recipe Generator")
|
43 |
+
|
44 |
+
# Sidebar for input
|
45 |
+
st.sidebar.header("Ingredient Input")
|
46 |
+
ingredients_input = st.sidebar.text_area(
|
47 |
+
"Enter ingredients (comma-separated):",
|
48 |
+
placeholder="e.g. chicken, tomatoes, onions, garlic"
|
49 |
)
|
50 |
+
|
51 |
+
# Load model
|
52 |
+
tokenizer, model = load_model()
|
53 |
+
|
54 |
+
# Generate button
|
55 |
+
if st.sidebar.button("Generate Recipe"):
|
56 |
+
if ingredients_input:
|
57 |
+
with st.spinner("Generating recipe..."):
|
58 |
+
recipe = generate_recipe(ingredients_input, tokenizer, model)
|
59 |
+
|
60 |
+
# Display recipe sections
|
61 |
+
st.subheader("🥘 Generated Recipe")
|
62 |
+
st.write(recipe)
|
63 |
+
else:
|
64 |
+
st.warning("Please enter some ingredients!")
|
65 |
|
66 |
+
# Additional UI elements
|
67 |
+
st.sidebar.markdown("---")
|
68 |
+
st.sidebar.info("Enter ingredients and click 'Generate Recipe'")
|
69 |
|
70 |
+
if __name__ == "__main__":
|
71 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|