Txcdc / app.py
AezersX
Upload 8 files
f282658
raw
history blame
1.25 kB
import os
import pandas as pd
import tensorflow as tf
import numpy as np
from tensorflow.keras.layers import TextVectorization
import gradio as gr
from tensorflow.keras.layers import TextVectorization
modelbaru = tf.keras.models.load_model('toxicity.h5')
MAX_FEATURES = 200000
data = pd.read_csv(os.path.join('jigsaw-toxic-comment-classification-challenge', 'train.csv', 'train.csv'))
x = data['comment_text']
y = data[data.columns[2:]].values
vectorizer = TextVectorization(max_tokens=MAX_FEATURES, output_sequence_length=1800, output_mode='int')
vectorizer.adapt(x.values)
vectorizer('Yo Whats up')[:3]
vectorized_text = vectorizer(x.values)
vectorized_text
input_str = vectorizer('yo i fuckin hate you')
res = modelbaru.predict(np.expand_dims(input_str,0))
res > 0.5
data.columns[2:]
data.columns[2:-1]
def score_comment(comment):
vectorized_comment = vectorizer([comment])
results = modelbaru.predict(vectorized_comment)
text = ''
for idx, col in enumerate(data.columns[2:-1]):
text += '{}: {}\n'.format(col, results[0][idx]>0.5)
return text
interface = gr.Interface(fn=score_comment, inputs=gr.inputs.Textbox(lines=2, placeholder='Toxic Detector by: AezersX'), outputs='text')
interface.launch(share=True)