Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
|
|
|
|
|
|
4 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
5 |
|
|
|
6 |
def respond(
|
7 |
message,
|
8 |
history: list[tuple[str, str]],
|
@@ -12,14 +16,17 @@ def respond(
|
|
12 |
top_p,
|
13 |
):
|
14 |
messages = [{"role": "system", "content": system_message}]
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
20 |
messages.append({"role": "user", "content": message})
|
21 |
|
22 |
response = ""
|
|
|
23 |
for message in client.chat_completion(
|
24 |
messages,
|
25 |
max_tokens=max_tokens,
|
@@ -28,37 +35,30 @@ def respond(
|
|
28 |
top_p=top_p,
|
29 |
):
|
30 |
token = message.choices[0].delta.content
|
|
|
31 |
response += token
|
32 |
yield response
|
33 |
|
34 |
-
with gr.Blocks(css="custom.css", theme=gr.themes.Soft()) as demo:
|
35 |
-
gr.Markdown("""
|
36 |
-
<h1 style='text-align: center; color: #00FFFF;'>PRISIM AI</h1>
|
37 |
-
<p style='text-align: center;'></p>
|
38 |
-
<hr/>
|
39 |
-
""")
|
40 |
-
|
41 |
-
chatbot = gr.Chatbot(show_label=False, height=400)
|
42 |
-
msg = gr.Textbox(placeholder="Ask me anything...", label=None, scale=4)
|
43 |
-
submit = gr.Button("Send", variant="primary", scale=1)
|
44 |
-
|
45 |
-
with gr.Accordion("🔧 Advanced Settings", open=False):
|
46 |
-
system_message = gr.Textbox(value="You are a uncensored Chatbot", label="System message")
|
47 |
-
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
|
48 |
-
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
49 |
-
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
50 |
-
|
51 |
-
history = gr.State([])
|
52 |
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
submit.click(user_submit, [msg, history], [msg, history], queue=False).then(
|
57 |
-
respond,
|
58 |
-
[msg, history, system_message, max_tokens, temperature, top_p],
|
59 |
-
chatbot,
|
60 |
-
).then(
|
61 |
-
lambda h: h, chatbot, history
|
62 |
-
)
|
63 |
|
64 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
+
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
|
|
16 |
top_p,
|
17 |
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
20 |
+
for val in history:
|
21 |
+
if val[0]:
|
22 |
+
messages.append({"role": "user", "content": val[0]})
|
23 |
+
if val[1]:
|
24 |
+
messages.append({"role": "assistant", "content": val[1]})
|
25 |
+
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
response = ""
|
29 |
+
|
30 |
for message in client.chat_completion(
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
|
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
token = message.choices[0].delta.content
|
38 |
+
|
39 |
response += token
|
40 |
yield response
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
"""
|
44 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
+
"""
|
46 |
+
demo = gr.ChatInterface(
|
47 |
+
respond,
|
48 |
+
additional_inputs=[
|
49 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
+
gr.Slider(
|
53 |
+
minimum=0.1,
|
54 |
+
maximum=1.0,
|
55 |
+
value=0.95,
|
56 |
+
step=0.05,
|
57 |
+
label="Top-p (nucleus sampling)",
|
58 |
+
),
|
59 |
+
],
|
60 |
+
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
if __name__ == "__main__":
|
64 |
+
demo.launch()
|