Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -13,75 +13,40 @@ model.to(device)
|
|
13 |
# Force Hebrew transcription
|
14 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="he", task="transcribe")
|
15 |
|
16 |
-
stop_processing = False
|
17 |
-
def stop():
|
18 |
-
global stop_processing
|
19 |
-
stop_processing = True
|
20 |
-
|
21 |
def transcribe_audio(audio_file):
|
22 |
-
global stop_processing
|
23 |
-
stop_processing = False
|
24 |
-
|
25 |
waveform, sr = librosa.load(audio_file, sr=16000)
|
26 |
-
|
27 |
-
|
28 |
-
waveform = waveform[: sr * time_limit_s]
|
29 |
|
30 |
-
# Safety limit (just in case)
|
31 |
-
max_audio_sec = 10800
|
32 |
-
if len(waveform) > sr * max_audio_sec:
|
33 |
-
waveform = waveform[: sr * max_audio_sec]
|
34 |
-
|
35 |
-
# Split into 25-second chunks
|
36 |
chunk_duration_s = 25
|
37 |
chunk_size = sr * chunk_duration_s
|
38 |
-
chunks = []
|
39 |
-
for start_idx in range(0, len(waveform), chunk_size):
|
40 |
-
chunk = waveform[start_idx : start_idx + chunk_size]
|
41 |
-
if len(chunk) < sr * 1:
|
42 |
-
continue
|
43 |
-
chunks.append(chunk)
|
44 |
|
45 |
partial_text = ""
|
46 |
-
for
|
47 |
-
|
48 |
-
yield "⚠️ Stopped by User ⚠️"
|
49 |
-
return
|
50 |
-
|
51 |
-
inputs = processor(
|
52 |
-
chunk,
|
53 |
-
sampling_rate=16000,
|
54 |
-
return_tensors="pt",
|
55 |
-
padding="longest",
|
56 |
-
return_attention_mask=True
|
57 |
-
)
|
58 |
input_features = inputs.input_features.to(device)
|
59 |
-
attention_mask = inputs.attention_mask.to(device)
|
60 |
|
61 |
with torch.no_grad():
|
62 |
predicted_ids = model.generate(
|
63 |
input_features,
|
64 |
-
|
65 |
-
max_new_tokens=444,
|
66 |
-
do_sample=False,
|
67 |
forced_decoder_ids=forced_decoder_ids
|
68 |
)
|
69 |
|
70 |
text_chunk = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
71 |
partial_text += text_chunk + "\n"
|
72 |
|
73 |
-
|
74 |
|
75 |
with gr.Blocks() as demo:
|
76 |
-
gr.Markdown("## Exceedea Transcription
|
77 |
|
78 |
audio_input = gr.Audio(type="filepath", label="Upload Audio (Truncate to 1 hour)")
|
79 |
-
output_text = gr.Textbox(label="
|
80 |
|
81 |
start_btn = gr.Button("Start Transcription")
|
82 |
-
stop_btn = gr.Button("Stop Processing", variant="stop")
|
83 |
|
84 |
start_btn.click(transcribe_audio, inputs=audio_input, outputs=output_text)
|
85 |
-
stop_btn.click(stop)
|
86 |
|
87 |
demo.launch()
|
|
|
13 |
# Force Hebrew transcription
|
14 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="he", task="transcribe")
|
15 |
|
|
|
|
|
|
|
|
|
|
|
16 |
def transcribe_audio(audio_file):
|
|
|
|
|
|
|
17 |
waveform, sr = librosa.load(audio_file, sr=16000)
|
18 |
+
max_audio_sec = 3600 # recommended 1-hour limit for stability
|
19 |
+
waveform = waveform[:sr * max_audio_sec]
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
chunk_duration_s = 25
|
22 |
chunk_size = sr * chunk_duration_s
|
23 |
+
chunks = [waveform[i:i + chunk_size] for i in range(0, len(waveform), chunk_size)]
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
partial_text = ""
|
26 |
+
for chunk in chunks:
|
27 |
+
inputs = processor(chunk, sampling_rate=16000, return_tensors="pt", padding=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
input_features = inputs.input_features.to(device)
|
|
|
29 |
|
30 |
with torch.no_grad():
|
31 |
predicted_ids = model.generate(
|
32 |
input_features,
|
33 |
+
max_new_tokens=444,
|
|
|
|
|
34 |
forced_decoder_ids=forced_decoder_ids
|
35 |
)
|
36 |
|
37 |
text_chunk = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
38 |
partial_text += text_chunk + "\n"
|
39 |
|
40 |
+
return partial_text # no yield, just final result
|
41 |
|
42 |
with gr.Blocks() as demo:
|
43 |
+
gr.Markdown("## Exceedea Transcription")
|
44 |
|
45 |
audio_input = gr.Audio(type="filepath", label="Upload Audio (Truncate to 1 hour)")
|
46 |
+
output_text = gr.Textbox(label="Full Transcription")
|
47 |
|
48 |
start_btn = gr.Button("Start Transcription")
|
|
|
49 |
|
50 |
start_btn.click(transcribe_audio, inputs=audio_input, outputs=output_text)
|
|
|
51 |
|
52 |
demo.launch()
|