Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,50 +10,86 @@ model = WhisperForConditionalGeneration.from_pretrained(model_id)
|
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
model.to(device)
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def transcribe_audio(audio_file):
|
16 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
waveform, sr = librosa.load(audio_file, sr=16000)
|
18 |
|
19 |
-
#
|
20 |
-
time_limit_s =
|
21 |
if len(waveform) > sr * time_limit_s:
|
22 |
waveform = waveform[: sr * time_limit_s]
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
47 |
-
return text
|
48 |
|
49 |
-
#
|
50 |
demo = gr.Interface(
|
51 |
fn=transcribe_audio,
|
52 |
inputs=gr.Audio(type="filepath"),
|
53 |
outputs="text",
|
54 |
title="Hebrew Whisper API",
|
55 |
-
api_name="transcribe" #
|
56 |
)
|
57 |
|
58 |
-
# Run on Hugging Face Spaces
|
59 |
demo.launch()
|
|
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
model.to(device)
|
12 |
|
13 |
+
# Force Hebrew transcription
|
14 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(
|
15 |
+
language="he",
|
16 |
+
task="transcribe"
|
17 |
+
)
|
18 |
+
|
19 |
+
stop_processing = False
|
20 |
+
def stop():
|
21 |
+
global stop_processing
|
22 |
+
stop_processing = True
|
23 |
|
24 |
def transcribe_audio(audio_file):
|
25 |
+
"""
|
26 |
+
Process the first 30 seconds of the audio, in 5-second chunks.
|
27 |
+
Return full transcription as a single output.
|
28 |
+
"""
|
29 |
+
global stop_processing
|
30 |
+
stop_processing = False
|
31 |
+
|
32 |
+
# Load at 16kHz
|
33 |
waveform, sr = librosa.load(audio_file, sr=16000)
|
34 |
|
35 |
+
# Truncate to the first 30 seconds
|
36 |
+
time_limit_s = 6000
|
37 |
if len(waveform) > sr * time_limit_s:
|
38 |
waveform = waveform[: sr * time_limit_s]
|
39 |
|
40 |
+
# Also limit if total is over 60 min (safety)
|
41 |
+
max_audio_sec = 60 * 60
|
42 |
+
if len(waveform) > sr * max_audio_sec:
|
43 |
+
waveform = waveform[: sr * max_audio_sec]
|
44 |
+
|
45 |
+
# Split into 5s chunks
|
46 |
+
chunk_duration_s = 25
|
47 |
+
chunk_size = sr * chunk_duration_s
|
48 |
+
chunks = []
|
49 |
+
for start_idx in range(0, len(waveform), chunk_size):
|
50 |
+
chunk = waveform[start_idx : start_idx + chunk_size]
|
51 |
+
if len(chunk) < sr * 1:
|
52 |
+
continue
|
53 |
+
chunks.append(chunk)
|
54 |
+
|
55 |
+
partial_text = ""
|
56 |
+
|
57 |
+
# Transcribe chunk by chunk
|
58 |
+
for chunk in chunks:
|
59 |
+
if stop_processing:
|
60 |
+
return "⚠️ Stopped by User ⚠️"
|
61 |
+
|
62 |
+
inputs = processor(
|
63 |
+
chunk,
|
64 |
+
sampling_rate=16000,
|
65 |
+
return_tensors="pt",
|
66 |
+
padding="longest",
|
67 |
+
return_attention_mask=True
|
68 |
)
|
69 |
+
input_features = inputs.input_features.to(device)
|
70 |
+
attention_mask = inputs.attention_mask.to(device)
|
71 |
+
|
72 |
+
with torch.no_grad():
|
73 |
+
predicted_ids = model.generate(
|
74 |
+
input_features,
|
75 |
+
attention_mask=attention_mask,
|
76 |
+
max_new_tokens=444,
|
77 |
+
do_sample=False,
|
78 |
+
forced_decoder_ids=forced_decoder_ids
|
79 |
+
)
|
80 |
+
|
81 |
+
text_chunk = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
82 |
+
partial_text += text_chunk + "\n"
|
83 |
|
84 |
+
return partial_text.strip()
|
|
|
|
|
85 |
|
86 |
+
# Build Gradio UI with API support
|
87 |
demo = gr.Interface(
|
88 |
fn=transcribe_audio,
|
89 |
inputs=gr.Audio(type="filepath"),
|
90 |
outputs="text",
|
91 |
title="Hebrew Whisper API",
|
92 |
+
api_name="transcribe" # Enables API access for Make.com
|
93 |
)
|
94 |
|
|
|
95 |
demo.launch()
|